由于数据保护法和机构内的官方程序,在实践中很难在机构之间共享医疗数据。因此,大多数现有的算法经过相对较小的脑电图(EEG)数据集的培训,这可能会损害预测准确性。在这项工作中,我们通过将公开可用的数据集分配到代表各个机构中数据的不相交集中来共享数据时模拟了一个情况。我们建议在每个机构中培训一个(本地)检测器,并将其个人预测汇总为最终预测。比较了四个集合计划,即多数投票,平均值,加权平均值和Dawid-Skene方法。该方法仅使用EEG通道的一个子集在独立的数据集上进行了验证。当每个机构提供足够数量的数据时,合奏的精度与对所有数据进行训练的单个检测器相当。加权平均聚合方案表现出最佳性能,当局部检测器接近对所有可用数据训练的单个检测器的性能时,它只能用DAWID-SKENE方法略有优于。
translated by 谷歌翻译
目的:开发和验证一种自动化方法,用于对新生儿重症监护病房中睡眠状态波动的床旁监测。方法:基于深度学习的算法是使用30个近期新生儿的长期(a)脑电图监测的53个EEG录音设计和训练的。使用来自30个多摄影记录的外部数据集对结果进行了验证。除了训练和验证单个脑电图通道安静的睡眠探测器外,我们还构建了睡眠状态趋势(SST),这是一种可视化分类器输出的床旁准备手段。结果:训练数据中安静的睡眠检测的准确性为90%,在4电极记录中获得的所有双极派生中,精度是可比的(85-86%)。该算法很好地概括了外部数据集,尽管信号推导不同,但仍显示81%的总体精度。 SST允许对分类器输出的直观,清晰可视化。结论:可以从单个EEG通道的高保真度中检测到睡眠状态的波动,并且可以将结果可视化为床边监视器中透明和直观的趋势。意义:睡眠状态趋势(SST)可以为护理人员提供对睡眠状态波动及其周期性的实时视图。
translated by 谷歌翻译
分析脑电图时,神经科医生经常在寻找各种“感兴趣的事件”。为了在这项任务中支持他们,已经开发了各种基于机器学习的算法。这些算法中的大多数将问题视为分类,从而独立处理信号段并忽略了持续时间事件固有的时间依赖性。在推理时,必须在处理后进行处理以检测实际事件。我们提出了一种基于深度学习的端到端事件检测方法(EventNet),该方法直接与事件一起作为学习目标,从临时的后处理方案逐渐消失,以将模型输出转化为事件。我们将EventNet与用于人工制品和癫痫发作检测的最新方法进行了比较,这两种事件类型具有高度可变的持续时间。 EventNet在检测两种事件类型方面显示出改进的性能。这些结果表明,将事件视为直接学习目标的力量,而不是使用临时后处理来获取它们。我们的事件检测框架可以轻松地扩展到信号处理中的其他事件检测问题,因为深度学习骨干链不取决于任何特定于任务的功能。
translated by 谷歌翻译
Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.
translated by 谷歌翻译
在本文中,我们提出了一种基于Markov转变的规模混合分布的时间序列随机模型,以检测脑电图(EEG)中的癫痫发作。在所提出的模型中,假设在高斯分布之后的每个时间点处的EEG信号是随机变量。高斯分布的协方差矩阵用潜伏的参数加权,这也是随机变量,导致协方差的随机波动。通过在该随机关系的背景下与Markov链引入潜在的状态变量,可以根据癫痫发作的状态来表示潜在比例参数分布的时间序列变化。在实验中,我们评估了使用具有从临床数据集分解的多个频带的eEgs来评估所提出的癫痫发作检测模型。结果表明,所提出的模型可以检测具有高灵敏度和优于几个基线的癫痫发作。
translated by 谷歌翻译
新生儿癫痫发作是一种通常遇到的神经系统条件。它们是严重神经障碍的第一个临床迹象。因此,需要快速识别和治疗以防止严重的死亡。在神经学领域中使用脑电图(EEG)允许精确地诊断几种医疗条件。然而,解释EEG信号需要高度专业人员的注意,因为婴儿脑在新生儿期间发育不起。检测癫痫发作可能会妨碍对婴儿的神经认知发展的负面影响。近年来,使用机器学习算法的新生儿癫痫发作检测已经获得牵引力。由于需要在癫痫发作检测的情况下对生物信号进行计算廉价的生物信号,因此本研究提供了一种基于机器学习(ML)的架构,其与以前的模型相当的预测性能,但具有最小级别配置。拟议的分类器在赫尔辛基大学医院录制的尼古尔缉获量的公共数据数据上进行了培训和测试。我们的架构实现了87%的最佳敏感性,比本研究中选择的标准ML型号的6%增加了6%。 ML分类器的模型大小优化为仅为4.84 kB,最小预测时间为182.61毫秒,从而使其部署在可穿戴的超边设备上,以便快速准确,并避免基于云的需求和其他这种穷举计算方法。
translated by 谷歌翻译
本报告描述了一组新生儿脑电图(EEG)记录,根据背景模式中异常的严重程度分级。该数据集由来自新生儿重症监护病房记录的53个新生儿的169小时多通道脑电图组成。所有新生儿均诊断出低氧缺血性脑病(HIE),这是全年前婴儿脑损伤的最常见原因。对于每种新生儿,选择了多个1小时的高质量脑电图,然后对背景异常进行评分。分级系统评估eeg属性,例如振幅和频率,连续性,睡眠循环,对称性和同步以及异常波形。然后将背景严重程度分为4年级:正常或轻度异常,中度异常,严重异常和不活跃的脑电图。数据可用作用于HIE,用于脑电图训练目的的新生儿的多通道脑电图的参考集,或用于开发和评估自动化等级算法。
translated by 谷歌翻译
机器学习可用于分析几种目的的生理数据。脑缺血的检测是对患者护理产生高影响的成就。我们试图研究来自非侵入性监测器的连续生理数据,以及使用机器学习的分析可以检测不同环境中的脑缺血,在颈动脉胚胎切除术后和急性中风中的血管内血栓切除术期间。我们将两个不同组和一名患者的结果进行详细地比较。虽然CEA患者的结果是一致的,但从血栓切除术患者的结果不是并且经常含有极值,例如1.0的精确值。我们突出了这一点,这是程序的持续时间和具有质量不好的数据,导致小数据集。因此,这些结果不能值得信任。
translated by 谷歌翻译
咳嗽音频信号分类是筛查呼吸道疾病(例如COVID-19)的潜在有用工具。由于从这种传染性疾病的患者那里收集数据是危险的,因此许多研究团队已转向众包来迅速收集咳嗽声数据,因为它是为了生成咳嗽数据集的工作。 Coughvid数据集邀请专家医生诊断有限数量上传的记录中存在的潜在疾病。但是,这种方法遭受了咳嗽的潜在标签,以及专家之间的显着分歧。在这项工作中,我们使用半监督的学习(SSL)方法来提高咳嗽数据集的标签一致性以及COVID-19的鲁棒性与健康的咳嗽声音分类。首先,我们利用现有的SSL专家知识聚合技术来克服数据集中的标签不一致和稀疏性。接下来,我们的SSL方法用于识别可用于训练或增加未来咳嗽分类模型的重新标记咳嗽音频样本的子样本。证明了重新标记的数据的一致性,因为它表现出高度的类可分离性,尽管原始数据集中存在专家标签不一致,但它比用户标记的数据高3倍。此外,在重新标记的数据中放大了用户标记的音频段的频谱差异,从而导致健康和COVID-19咳嗽之间的功率频谱密度显着不同,这既证明了新数据集的一致性及其与新数据的一致性及其与新数据的一致性的提高,其解释性与其与其解释性的一致性相同。声学的观点。最后,我们演示了如何使用重新标记的数据集来训练咳嗽分类器。这种SSL方法可用于结合几位专家的医学知识,以提高任何诊断分类任务的数据库一致性。
translated by 谷歌翻译
与脑电图(TMS-EEG)共同注册的经颅磁刺激先前已证明是对阿尔茨海默氏病(AD)研究的有用工具。在这项工作中,我们研究了使用TMS诱发的脑电图反应的使用,以对健康对照(HC)分类AD患者。通过使用包含17AD和17HC的数据集,我们从单个TMS响应中提取各种时域特征,并在低,中和高密度EEG电极集中平均它们。在保留一项受试者的验证方案中,使用带有随机森林分类器的高密度电极获得了AD与HC的最佳分类性能。准确性,灵敏度和特异性分别为92.7%,96.58%和88.2%。
translated by 谷歌翻译
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people, especially in developing and impoverished countries where high levels of pollution, unclean living conditions, and overcrowding are frequently observed, along with insufficient medical infrastructure. Pleural effusion, a condition in which fluids fill the lung and complicate breathing, is brought on by pneumonia. Early detection of pneumonia is essential for ensuring curative care and boosting survival rates. The approach most usually used to diagnose pneumonia is chest X-ray imaging. The purpose of this work is to develop a method for the automatic diagnosis of bacterial and viral pneumonia in digital x-ray pictures. This article first presents the authors' technique, and then gives a comprehensive report on recent developments in the field of reliable diagnosis of pneumonia. In this study, here tuned a state-of-the-art deep convolutional neural network to classify plant diseases based on images and tested its performance. Deep learning architecture is compared empirically. VGG19, ResNet with 152v2, Resnext101, Seresnet152, Mobilenettv2, and DenseNet with 201 layers are among the architectures tested. Experiment data consists of two groups, sick and healthy X-ray pictures. To take appropriate action against plant diseases as soon as possible, rapid disease identification models are preferred. DenseNet201 has shown no overfitting or performance degradation in our experiments, and its accuracy tends to increase as the number of epochs increases. Further, DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time. This architecture outperforms the competition in terms of testing accuracy, scoring 95%. Each architecture was trained using Keras, using Theano as the backend.
translated by 谷歌翻译
目的:确定逼真,但是电磁图的计算上有效模型可用于预先列车,具有广泛的形态和特定于给定条件的形态和异常 - T波段(TWA)由于创伤后应激障碍,或重点 - 在稀有人的小型数据库上显着提高了性能。方法:使用先前经过验证的人工ECG模型,我们生成了180,000人的人工ECG,有或没有重要的TWA,具有不同的心率,呼吸率,TWA幅度和ECG形态。在70,000名患者中培训的DNN进行分类为25种不同的节奏,将输出层修改为二进制类(TWA或NO-TWA,或等效,PTSD或NO-PTSD),并对人工ECG进行转移学习。在最终转移学习步骤中,DNN在ECG的培训和交叉验证,从12个PTE和24个控件,用于使用三个数据库的所有组合。主要结果:通过进行转移学习步骤,使用预先培训的心律失常DNN,人工数据和真实的PTSD相关的心电图数据,发现了最佳性能的方法(AUROC = 0.77,精度= 0.72,F1-SCATE = 0.64) 。从训练中删除人工数据导致性能的最大下降。从培训中取出心律失常数据提供了适度但重要的,表现下降。最终模型在人工数据上显示出在性能下没有显着下降,表明没有过度拟合。意义:在医疗保健中,通常只有一小部分高质量数据和标签,或更大的数据库,质量较低(和较差的相关)标签。这里呈现的范式,涉及基于模型的性能提升,通过在大型现实人工数据库和部分相关的真实数据库上传输学习来提供解决方案。
translated by 谷歌翻译
Covid-19大流行为感染检测和监测解决方案产生了重大的兴趣和需求。在本文中,我们提出了一种机器学习方法,可以使用在消费者设备上进行的录音来快速分离Covid-19。该方法将信号处理方法与微调深层学习网络相结合,提供了信号去噪,咳嗽检测和分类的方法。我们还开发并部署了一个移动应用程序,使用症状检查器与语音,呼吸和咳嗽信号一起使用,以检测Covid-19感染。该应用程序对两个开放的数据集和最终用户在测试版测试期间收集的嘈杂数据显示了鲁棒性能。
translated by 谷歌翻译
最近在生物医学中大型数据集的可用性激发了多种医疗保健应用的代表性学习方法的开发。尽管预测性能取得了进步,但这种方法的临床实用性在暴露于现实世界数据时受到限制。在这里,我们开发模型诊断措施,以检测部署过程中潜在的陷阱,而无需访问外部数据。具体而言,我们专注于通过数据转换建模电生理信号(EEG)的现实数据转移,并通过分析a)模型的潜在空间和b)预测性不确定性在这些变换下扩展了常规的基于任务的评估。我们使用公开可用的大规模临床EEG进行了多个EEG功能编码器和两个临床相关的下游任务进行实验。在这种实验环境中,我们的结果表明,在提出的数据转移下,潜在空间完整性和模型不确定性的度量可能有助于预测部署过程中的性能退化。
translated by 谷歌翻译
对自然和人制过程的研究通常会导致长时间有序值的长序列,也就是时间序列(TS)。这样的过程通常由多个状态组成,例如机器的操作模式,使观测过程中的状态变化会导致测量值形状的分布变化。时间序列分割(TSS)试图发现TS事后的这种变化,以推断数据生成过程的变化。通常将TSS视为无监督的学习问题,目的是识别某些统计属性可区分的细分。 TSS的当前算法要求用户设置依赖域的超参数,对TS值分布进行假设或可检测更改的类型,以限制其适用性。常见的超参数是段均匀性和变更点的数量的度量,对于每个数据集,这尤其难以调节。我们提出了TSS的一种新颖,高度准确,无参数和域的无义方法的方法。扣子分层将TS分为两个部分。更改点是通过训练每个可能的拆分点的二进制TS分类器来确定的,并选择最能识别从任何一个分区的子序列的一个拆分。 CLASP使用两种新颖的定制算法从数据中学习了其主要的两个模型参数。在我们使用115个数据集的基准测试的实验评估中,我们表明,扣子优于准确性,并且可以快速且可扩展。此外,我们使用几个现实世界的案例研究强调了扣子的特性。
translated by 谷歌翻译
背景:基于AI的足够大型,精心策划的医疗数据集的分析已被证明有望提供早期检测,更快的诊断,更好的决策和更有效的治疗方法。但是,从多种来源获得的如此高度机密且非常敏感的医疗数据通常受到高度限制,因为不当使用,不安全的存储,数据泄漏或滥用可能侵犯了一个人的隐私。在这项工作中,我们将联合学习范式应用于异质的,孤立的高清心电图集,该图从12铅的ECG传感器阵列到达来训练AI模型。与在中心位置收集相同的数据时,我们评估了所得模型的能力,与经过训练的最新模型相比,获得了等效性能。方法:我们提出了一种基于联合学习范式训练AI模型的隐私方法,以培训AI模型,以实现异质,分布式,数据集。该方法应用于基于梯度增强,卷积神经网络和具有长期短期记忆的复发神经网络的广泛机器学习技术。这些模型在一个心电图数据集上进行了培训,该数据集包含从六名地理分开和异质来源的43,059名患者收集的12个铅录音。研究结果:用于检测心血管异常的AI模型的结果集获得了与使用集中学习方法训练的模型相当的预测性能。解释:计算参数的方法在本地为全局模型做出了贡献,然后仅交换此类参数,而不是ML中的整个敏感数据,这有助于保留医疗数据隐私。
translated by 谷歌翻译
闭环大脑刺激是指捕获诸如脑电图(EEG)之类的神经生理学措施,迅速识别感兴趣的神经事件,并产生听觉,磁性或电刺激,从而精确地与大脑过程相互作用。这是一种基本神经科学的新方法,也许是临床应用,例如恢复降解记忆功能;但是,现有工具很昂贵,繁琐,并且具有有限的实验灵活性。在本文中,我们提出了Portiloop,这是一种基于深度学习的,便携式和低成本的闭环刺激系统,能够靶向特定的脑振荡。我们首先记录可以从市售组件构建的开放式软件实现。我们还提供了快速,轻巧的神经网络模型和探索算法,该算法自动优化了所需的脑振荡的模型超参数。最后,我们在实时睡眠主轴检测的具有挑战性的测试案例中验证了该技术,结果可与大规模在线数据注释主轴数据集(MODA;组共识)上的离线专家绩效相当。社区可以提供软件和计划,作为开放科学计划,旨在鼓励进一步开发并推动闭环神经科学研究。
translated by 谷歌翻译
AASM准则是为了有一种常用的方法,旨在标准化睡眠评分程序的数十年努力的结果。该指南涵盖了从技术/数字规格(例如,推荐的EEG推导)到相应的详细睡眠评分规则到年龄的几个方面。在睡眠评分自动化的背景下,与许多其他技术相比,深度学习表现出更好的性能。通常,临床专业知识和官方准则对于支持自动睡眠评分算法在解决任务时至关重要。在本文中,我们表明,基于深度学习的睡眠评分算法可能不需要充分利用临床知识或严格遵循AASM准则。具体而言,我们证明了U-Sleep是一种最先进的睡眠评分算法,即使使用临床非申请或非规定派生,也可以解决得分任务,即使无需利用有关有关的信息,也无需利用有关有关的信息。受试者的年代年龄。我们最终加强了一个众所周知的发现,即使用来自多个数据中心的数据始终导致与单个队列上的培训相比,可以使性能更好。确实,我们表明,即使增加了单个数据队列的大小和异质性,后者仍然有效。在我们的所有实验中,我们使用了来自13个不同临床研究的28528多个多摄影研究研究。
translated by 谷歌翻译
早期发现焦虑症对于减少精神障碍患者的苦难并改善治疗结果至关重要。基于MHealth平台的焦虑筛查在提高筛选效率和降低筛查成本方面具有特殊实用价值。实际上,受试者的身体和心理评估中移动设备的差异以及数据质量不均匀的问题和现实世界中数据的少量数据量使现有方法无效。因此,我们提出了一个基于时空特征融合的框架,用于非触发焦虑。为了降低数据质量不平衡的影响,我们构建了一个基于“ 3DCNN+LSTM”的特征提取网络,并融合了面部行为和非接触式生理学的时空特征。此外,我们设计了一种相似性评估策略,以解决较小的数据样本量导致模型准确性下降的问题。我们的框架已通过现实世界中的机组数据集进行了验证,并且两个公共数据集UBFC-Phys和Swell-KW。实验结果表明,我们框架的总体性能要比最新的比较方法更好。
translated by 谷歌翻译
由单一头皮电极(加上参考电极)捕获的时间序列用于预测癫痫发作的敏感性。时间序列进行预处理,分割,每个节段使用三种不同的已知方法转化为图像:复发图,Gramian Angular Field,Markov Transition Firt Field。通过平均CNN的SoftMax层的输出来计算,在未来预定义的时间窗口中发生癫痫发作的可能性与通常考虑分类层输出的情况不同。通过阈值这种可能性,癫痫发作的预测具有更好的性能。有趣的是,对于几乎每个患者,最佳阈值与50%不同。结果表明,该技术可以预测一些癫痫发作和患者的良好结果。但是,需要更多的测试,即更多的患者和更多的癫痫发作,以更好地了解该技术的真正潜力。
translated by 谷歌翻译