由于量子电路上的旋转组件,基于变异电路的某些量子神经网络可以被认为等于经典的傅立叶网络。另外,它们可用于预测连续函数的傅立叶系数。时间序列数据表示时间变量的状态。由于某些时间序列数据也可以视为连续功能,因此我们可以期望量子机学习模型能够在时间序列数据上成功执行许多数据分析任务。因此,重要的是研究用于时间数据处理的新量子逻辑并分析量子计算机上数据的内在关系。在本文中,我们通过使用需要几个量子门的简单量子运算符,浏览经典数据预处理和对Arima模型进行预测的量子类似物。然后,我们讨论未来的方向和一些可用于量子计算机时间数据分析的工具/算法。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
预计人工神经网络的领域将强烈受益于量子计算机的最新发展。特别是Quantum Machine Learning,一类利用用于创建可训练神经网络的Qubits的量子算法,将提供更多的力量来解决模式识别,聚类和机器学习等问题。前馈神经网络的构建块由连接到输出神经元的一层神经元组成,该输出神经元根据任意激活函数被激活。相应的学习算法以Rosenblatt Perceptron的名义。具有特定激活功能的量子感知是已知的,但仍然缺乏在量子计算机上实现任意激活功能的一般方法。在这里,我们用量子算法填充这个间隙,该算法能够将任何分析激活功能近似于其功率系列的任何给定顺序。与以前的提案不同,提供不可逆转的测量和简化的激活功能,我们展示了如何将任何分析功能近似于任何所需的准确性,而无需测量编码信息的状态。由于这种结构的一般性,任何前锋神经网络都可以根据Hornik定理获取通用近似性质。我们的结果重新纳入栅极型量子计算机体系结构中的人工神经网络科学。
translated by 谷歌翻译
在这个接近中间尺度的量子时代,云上有两种类型的近期量子设备:基于离散变量模型和线性光学器件(Photonics)QPU的超导量子处理单元(QPU),基于连续变量(CV)) 模型。离散变量模型中的量子计算以有限的尺寸量子状态空间和无限尺寸空间中的CV模型执行。在实现量子算法时,CV模型提供了更多的量子门,这些量子门在离散变量模型中不可用。基于简历的光子量子计算机使用不同的测量方法和截止尺寸的概念来控制量子电路的输出向量长度的额外灵活性。
translated by 谷歌翻译
In recent times, Variational Quantum Circuits (VQC) have been widely adopted to different tasks in machine learning such as Combinatorial Optimization and Supervised Learning. With the growing interest, it is pertinent to study the boundaries of the classical simulation of VQCs to effectively benchmark the algorithms. Classically simulating VQCs can also provide the quantum algorithms with a better initialization reducing the amount of quantum resources needed to train the algorithm. This manuscript proposes an algorithm that compresses the quantum state within a circuit using a tensor ring representation which allows for the implementation of VQC based algorithms on a classical simulator at a fraction of the usual storage and computational complexity. Using the tensor ring approximation of the input quantum state, we propose a method that applies the parametrized unitary operations while retaining the low-rank structure of the tensor ring corresponding to the transformed quantum state, providing an exponential improvement of storage and computational time in the number of qubits and layers. This approximation is used to implement the tensor ring VQC for the task of supervised learning on Iris and MNIST datasets to demonstrate the comparable performance as that of the implementations from classical simulator using Matrix Product States.
translated by 谷歌翻译
Quantum machine learning has become an area of growing interest but has certain theoretical and hardware-specific limitations. Notably, the problem of vanishing gradients, or barren plateaus, renders the training impossible for circuits with high qubit counts, imposing a limit on the number of qubits that data scientists can use for solving problems. Independently, angle-embedded supervised quantum neural networks were shown to produce truncated Fourier series with a degree directly dependent on two factors: the depth of the encoding, and the number of parallel qubits the encoding is applied to. The degree of the Fourier series limits the model expressivity. This work introduces two new architectures whose Fourier degrees grow exponentially: the sequential and parallel exponential quantum machine learning architectures. This is done by efficiently using the available Hilbert space when encoding, increasing the expressivity of the quantum encoding. Therefore, the exponential growth allows staying at the low-qubit limit to create highly expressive circuits avoiding barren plateaus. Practically, parallel exponential architecture was shown to outperform the existing linear architectures by reducing their final mean square error value by up to 44.7% in a one-dimensional test problem. Furthermore, the feasibility of this technique was also shown on a trapped ion quantum processing unit.
translated by 谷歌翻译
量子贝叶斯AI(Q-B)是一个新兴领域,可杠杆计算中可用的计算收益。承诺是许多贝叶斯算法中的指数加速。我们的目标是将这些方法直接应用于统计和机器学习问题。我们提供了经典和量子概率之间的二元性,以计算后验量的利益。我们的框架从冯·诺伊曼(Von Neumann)的量子测量原理中的角度统一了MCMC,深度学习和量子学习计算。量子嵌入和神经门也是数据编码和特征选择的重要组成部分。在统计学习中,具有众所周知的内核方法具有自然性。我们说明了两种简单分类算法上量子算法的行为。最后,我们以未来研究的指示得出结论。
translated by 谷歌翻译
我们设计和分析了量子变压器,扩展了最先进的经典变压器神经网络体系结构,已知在自然语言处理和图像分析中表现出色。在先前用于数据加载和正交神经层的参数化量子电路的工作的基础上,我们引入了三种量子注意机制,包括基于复合矩阵的量子变压器。这些量子体系结构可以使用浅量子电路构建,并可以提供定性不同的分类模型。与最佳的经典变压器和其他经典基准相比,我们对标准医疗图像数据集进行了量子变压器的广泛模拟,这些量子变压器表现出竞争力,有时表现更好。与经典算法相对于分类图像的大小,我们的量子注意层的计算复杂性被证明是有利的。与拥有数百万参数的最佳经典方法相比,我们的量子体系结构具有数千个参数。最后,我们在超导量子计算机上实施了量子变压器,并获得了多达六个量子实验的令人鼓舞的结果。
translated by 谷歌翻译
我们提出了一种新的混合系统,用于通过使用多目标遗传算法在灰度图像上自动生成和训练量子启发的分类器。我们定义一个动态健身函数,以获得最小的电路和最高的观点数据准确性,以确保所提出的技术是可推广且健壮的。我们通过惩罚其外观来最大程度地减少生成电路的复杂性。我们使用二维降低方法减少图像的大小:主成分分析(PCA),该分析(PCA)是为了优化目的而在个体中编码的,以及一个小的卷积自动编码器(CAE)。将这两种方法相互比较,并采用经典的非线性方法来理解其行为,并确保分类能力是由于量子电路而不是用于降低维度的预处理技术引起的。
translated by 谷歌翻译
量子计算是使用量子力学执行计算的过程。该领域研究某些亚杀菌粒子的量子行为,以便随后在执行计算,以及大规模信息处理中使用。这些能力可以在计算时间和经典计算机上的成本方面提供量子计算机的优势。如今,由于计算复杂性或计算所需的时间,具有科学挑战,这是由于古典计算而无法执行,并且量子计算是可能的答案之一。然而,电流量子器件尚未实现必要的QUBITS,并且没有足够的容错才能实现这些目标。尽管如此,还有其他领域,如机器学习或化学,其中量子计算对电流量子器件有用。本手稿旨在展示2017年和2021年之间发布的论文的系统文献综述,以确定,分析和分类量子机器学习和其应用中使用的不同算法。因此,该研究确定了使用量子机器学习技术和算法的52篇文章。发现算法的主要类型是经典机器学习算法的量子实现,例如支持向量机或K最近邻模型,以及古典的深度学习算法,如量子神经网络。许多文章试图解决目前通过古典机器学习回答的问题,但使用量子设备和算法。即使结果很有希望,量子机器学习也远未实现其全部潜力。由于现有量子计算机缺乏足够的质量,速度和比例以允许量子计算来实现其全部潜力,因此需要提高量子硬件。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
随着人工智能和自动驾驶技术的快速发展,对半导体的需求预计将大大增加。但是,半导体制造和新技术的开发的大量扩展将带来许多缺陷晶片。如果这些缺陷晶片尚未正确检查,则对这些缺陷晶片的无效半导体处理将对我们的环境产生额外影响,例如二氧化碳的发射过量和能源消耗。在本文中,我们利用量子计算的信息处理优势来促进缺陷学习缺陷审查(DLDR)。我们提出了一种经典的量子混合算法,用于近期量子处理器的深度学习。通过调整在其上实现的参数,由我们的框架驱动的量子电路学习给定的DLDR任务,包括晶圆缺陷地图分类,缺陷模式分类和热点检测。此外,我们探索具有不同表达能力和纠缠能力的参数化量子电路。这些结果可用于构建未来的路线图,以开发基于电路的量子深度学习,以进行半导体缺陷检测。
translated by 谷歌翻译
We propose a classical-quantum hybrid algorithm for machine learning on near-term quantum processors, which we call quantum circuit learning. A quantum circuit driven by our framework learns a given task by tuning parameters implemented on it. The iterative optimization of the parameters allows us to circumvent the high-depth circuit. Theoretical investigation shows that a quantum circuit can approximate nonlinear functions, which is further confirmed by numerical simulations. Hybridizing a low-depth quantum circuit and a classical computer for machine learning, the proposed framework paves the way toward applications of near-term quantum devices for quantum machine learning.
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
数据装配过程是量子机学习的瓶颈之一,可能会否定任何量子加速。鉴于此,必须采用更有效的数据编码策略。我们提出了一种基于光子的骨气数据编码方案,该方案使用较少的编码层嵌入经典数据点,并通过将数据点映射到高维FOCK空间中,从而规避非线性光学组件的需求。电路的表达能力可以通过输入光子的数量来控制。我们的工作阐明了量子光子学在量子机学习模型的表达能力方面提供的独特优势。通过利用光子数依赖的表达能力,我们提出了三种不同的中间尺度量子兼容二进制分类方法,其所需资源适用于不同监督分类任务。
translated by 谷歌翻译
The basic idea of quantum computing is surprisingly similar to that of kernel methods in machine learning, namely to efficiently perform computations in an intractably large Hilbert space. In this paper we explore some theoretical foundations of this link and show how it opens up a new avenue for the design of quantum machine learning algorithms. We interpret the process of encoding inputs in a quantum state as a nonlinear feature map that maps data to quantum Hilbert space. A quantum computer can now analyse the input data in this feature space. Based on this link, we discuss two approaches for building a quantum model for classification. In the first approach, the quantum device estimates inner products of quantum states to compute a classically intractable kernel. This kernel can be fed into any classical kernel method such as a support vector machine. In the second approach, we can use a variational quantum circuit as a linear model that classifies data explicitly in Hilbert space. We illustrate these ideas with a feature map based on squeezing in a continuous-variable system, and visualise the working principle with 2-dimensional mini-benchmark datasets.
translated by 谷歌翻译
基于内核的量子分类器是用于复杂数据的超线化分类的最有趣,最强大的量子机学习技术,可以在浅深度量子电路(例如交换测试分类器)中轻松实现。出乎意料的是,通过引入差异方案,可以将支持向量机固有而明确地实现,以将SVM理论的二次优化问题映射到量子古典的变分优化问题。该方案使用参数化的量子电路(PQC)实现,以创建一个不均匀的权重向量,以索引量子位,可以在线性时间内评估训练损失和分类得分。我们训练该变量量子近似支持向量机(VQASVM)的经典参数,该参数可以转移到其他VQASVM决策推理电路的许多副本中,以分类新查询数据。我们的VQASVM算法对基于云的量子计算机的玩具示例数据集进行了实验,以进行可行性评估,并进行了数值研究以评估其在标准的IRIS花朵数据集上的性能。虹膜数据分类的准确性达到98.8%。
translated by 谷歌翻译
本文旨在研究基于电路的混合量子卷积神经网络(QCNNS)如何在遥感的上下文中成功地在图像分类器中成功使用。通过在标准神经网络内引入量子层来丰富CNN的经典架构。本工作中提出的新型QCNN应用于土地使用和陆地覆盖(LULC)分类,选择为地球观测(EO)用例,并在欧元区数据集上测试用作参考基准。通过证明QCNN性能高于经典对应物,多标量分类的结果证明了所提出的方法的有效性。此外,各种量子电路的研究表明,利用量子纠缠的诸如最佳分类评分。本研究强调了将量子计算应用于EO案例研究的潜在能力,并为期货调查提供了理论和实验背景。
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译