与传统的卷积神经网络(CNN)和视觉变压器不同,多层默认(MLP)是一种新的视觉模型,具有极其简单的架构,其仅由完全连接的层堆叠。 Vision MLP的输入图像通常被分成多个令牌(补丁),而现有的MLP模型直接用固定权重聚合它们,忽略来自不同图像的令牌的变化语义信息。为了动态聚合令牌,我们建议将每个令牌代表为具有两个部分,幅度和相位的波函数。幅度是原始特征,并且相位项是根据输入图像的语义内容改变的复值。介绍相位项可以动态调制MLP中令牌和固定权重之间的关系。基于波浪状令牌表示,我们建立了一种用于视觉任务的新型波-MLP架构。广泛的实验表明,所提出的波-MLP优于各种视觉任务的最先进的MLP架构,例如图像分类,对象检测和语义分割。
translated by 谷歌翻译
先前的视觉MLP,如MLP-MILER和RESMLP接受线性扁平的图像贴片作为输入,使其对不同的输入大小和难以捕获空间信息。这种方法隐瞒了MLP与基于变压器的对应物相比,并防止它们成为计算机视觉的一般骨干。本文介绍了Hire-MLP,通过\ TextBF {Hi} reachical \ TextBF {Re}排列,这是一个简单而竞争的愿景MLP架构,其中包含两个重排级别。具体地,提出内部区域重新排列以捕获空间区域内的局部信息,并且提出横区域重新排列以使不同区域之间的信息通信能够通过沿空间方向循环地转换所有令牌来实现不同区域之间的信息通信。广泛的实验证明了Hire-MLP作为各种视觉任务的多功能骨干的有效性。特别是,Hire-MLP在图像分类,对象检测和语义分割任务上实现竞争结果,例如,在Imagenet上的83.8%的前1个精度,51.7%盒AP和Coco Val2017上的44.8%掩模AP和Ade20k上的49.9%Miou ,超越以前的基于变压器和基于MLP的型号,具有更好的折衷以获得准确性和吞吐量。代码可在https://github.com/ggjy/hire-wave-mlp.pytorch获得。
translated by 谷歌翻译
变压器网络对计算机视觉任务取得了很大的进步。变压器 - 变压器(TNT)架构利用内部变压器和外部变压器提取本地和全局表示。在这项工作中,我们通过引入两个先进的设计:1)金字塔架构和2)卷积阀。通过建立分层表示,新的“金字塔”显着改善了原始TNT。Pyramidtnt比以前的最先进的视觉变压器(如Swin Transformer)实现更好的表演。我们希望这一新基线能够有助于视觉变压器的进一步研究和应用。代码将在https://github.com/huawei-noah/cv-backbones/tree/master/tnt_pytorch获得。
translated by 谷歌翻译
本文解决了由多头自我注意力(MHSA)中高计算/空间复杂性引起的视觉变压器的低效率缺陷。为此,我们提出了层次MHSA(H-MHSA),其表示以层次方式计算。具体而言,我们首先将输入图像分为通常完成的补丁,每个补丁都被视为令牌。然后,拟议的H-MHSA学习本地贴片中的令牌关系,作为局部关系建模。然后,将小贴片合并为较大的贴片,H-MHSA对少量合并令牌的全局依赖性建模。最后,汇总了本地和全球专注的功能,以获得具有强大表示能力的功能。由于我们仅在每个步骤中计算有限数量的令牌的注意力,因此大大减少了计算负载。因此,H-MHSA可以在不牺牲细粒度信息的情况下有效地模拟令牌之间的全局关系。使用H-MHSA模块合并,我们建立了一个基于层次的变压器网络的家族,即HAT-NET。为了证明在场景理解中HAT-NET的优越性,我们就基本视觉任务进行了广泛的实验,包括图像分类,语义分割,对象检测和实例细分。因此,HAT-NET为视觉变压器提供了新的视角。可以在https://github.com/yun-liu/hat-net上获得代码和预估计的模型。
translated by 谷歌翻译
本文介绍了一个简单的MLP架构,CycleMLP,这是一种多功能骨干,用于视觉识别和密集的预测。与现代MLP架构相比,例如MLP混合器,RESMLP和GMLP,其架构与图像尺寸相关,因此在物体检测和分割中不可行,与现代方法相比具有两个优点。 (1)它可以应对各种图像尺寸。 (2)通过使用本地窗口,它可以实现对图像大小的线性计算复杂性。相比之下,由于完全空间连接,以前的MLP具有$ O(n ^ 2)$计算。我们构建一系列模型,超越现有的MLP,甚至最先进的基于变压器的模型,例如,使用较少的参数和拖鞋。我们扩展了类似MLP的模型的适用性,使它们成为密集预测任务的多功能骨干。 CycleMLP在对象检测,实例分割和语义细分上实现了竞争结果。特别是,Cyclemlp-tiny优于3.3%Miou在Ade20K数据集中的速度较少,具有较少的拖鞋。此外,CycleMLP还在Imagenet-C数据集上显示出优异的零射鲁布利。代码可以在https://github.com/shoufachen/cyclemlp获得。
translated by 谷歌翻译
由于复杂的注意机制和模型设计,大多数现有的视觉变压器(VIT)无法在现实的工业部署方案中的卷积神经网络(CNN)高效,例如张力和coreml。这提出了一个独特的挑战:可以设计视觉神经网络以与CNN一样快地推断并表现强大吗?最近的作品试图设计CNN-Transformer混合体系结构来解决这个问题,但是这些作品的整体性能远非令人满意。为了结束这些结束,我们提出了下一代视觉变压器,以在现实的工业场景中有效部署,即下一步,从延迟/准确性权衡的角度来看,它在CNN和VIT上占主导地位。在这项工作中,下一个卷积块(NCB)和下一个变压器块(NTB)分别开发出用于使用部署友好机制捕获本地和全球信息。然后,下一个混合策略(NHS)旨在将NCB和NTB堆叠在有效的混合范式中,从而提高了各种下游任务中的性能。广泛的实验表明,在各种视觉任务方面的延迟/准确性权衡方面,下一个VIT明显优于现有的CNN,VIT和CNN转换混合体系结构。在Tensorrt上,在可可检测上,Next-Vit超过5.4 MAP(从40.4到45.8),在类似延迟下,ADE20K细分的8.2%MIOU(从38.8%到47.0%)。同时,它可以与CSWIN达到可比的性能,而推理速度则以3.6倍的速度加速。在COREML上,在类似的延迟下,在COCO检测上,下一步超过了可可检测的4.6 MAP(从42.6到47.2),ADE20K分割的3.5%MIOU(从45.2%到48.7%)。代码将最近发布。
translated by 谷歌翻译
我们介绍克斯内变压器,一种高效且有效的变压器的骨干,用于通用视觉任务。变压器设计的具有挑战性的问题是,全球自我关注来计算成本昂贵,而局部自我关注经常限制每个令牌的相互作用。为了解决这个问题,我们开发了以平行的横向和垂直条纹在水平和垂直条纹中计算自我关注的交叉形窗口自我关注机制,通过将输入特征分成相等的条纹而获得的每个条纹宽度。我们提供了条纹宽度效果的数学分析,并改变变压器网络的不同层的条纹宽度,这在限制计算成本时实现了强大的建模能力。我们还介绍了本地增强的位置编码(LEPE),比现有的编码方案更好地处理本地位置信息。 LEPE自然支持任意输入分辨率,因此对下游任务特别有效和友好。 CSWIN变压器并入其具有这些设计和分层结构,展示了普通愿景任务的竞争性能。具体来说,它在ImageNet-1K上实现了85.4 \%Top-1精度,而无需任何额外的培训数据或标签,53.9盒AP和46.4掩模AP,ADE20K语义分割任务上的52.2 Miou,超过以前的状态 - 在类似的拖鞋设置下,艺术品+1.2,+2.0,+1.4和+2.0分别为+1.2,+2.0,+1.4和+2.0。通过在较大的数据集Imagenet-21k上进行前预先预订,我们在Ave20K上实现了87.5%的成像-1K和高分性能,55.7 miou。代码和模型可在https://github.com/microsoft/cswin-transformer中找到。
translated by 谷歌翻译
The three existing dominant network families, i.e., CNNs, Transformers, and MLPs, differ from each other mainly in the ways of fusing spatial contextual information, leaving designing more effective token-mixing mechanisms at the core of backbone architecture development. In this work, we propose an innovative token-mixer, dubbed Active Token Mixer (ATM), to actively incorporate flexible contextual information distributed across different channels from other tokens into the given query token. This fundamental operator actively predicts where to capture useful contexts and learns how to fuse the captured contexts with the query token at channel level. In this way, the spatial range of token-mixing can be expanded to a global scope with limited computational complexity, where the way of token-mixing is reformed. We take ATM as the primary operator and assemble ATMs into a cascade architecture, dubbed ATMNet. Extensive experiments demonstrate that ATMNet is generally applicable and comprehensively surpasses different families of SOTA vision backbones by a clear margin on a broad range of vision tasks, including visual recognition and dense prediction tasks. Code is available at https://github.com/microsoft/ActiveMLP.
translated by 谷歌翻译
We propose focal modulation networks (FocalNets in short), where self-attention (SA) is completely replaced by a focal modulation mechanism for modeling token interactions in vision. Focal modulation comprises three components: (i) hierarchical contextualization, implemented using a stack of depth-wise convolutional layers, to encode visual contexts from short to long ranges, (ii) gated aggregation to selectively gather contexts for each query token based on its content, and (iii) element-wise modulation or affine transformation to inject the aggregated context into the query. Extensive experiments show FocalNets outperform the state-of-the-art SA counterparts (e.g., Swin and Focal Transformers) with similar computational costs on the tasks of image classification, object detection, and segmentation. Specifically, FocalNets with tiny and base size achieve 82.3% and 83.9% top-1 accuracy on ImageNet-1K. After pretrained on ImageNet-22K in 224 resolution, it attains 86.5% and 87.3% top-1 accuracy when finetuned with resolution 224 and 384, respectively. When transferred to downstream tasks, FocalNets exhibit clear superiority. For object detection with Mask R-CNN, FocalNet base trained with 1\times outperforms the Swin counterpart by 2.1 points and already surpasses Swin trained with 3\times schedule (49.0 v.s. 48.5). For semantic segmentation with UPerNet, FocalNet base at single-scale outperforms Swin by 2.4, and beats Swin at multi-scale (50.5 v.s. 49.7). Using large FocalNet and Mask2former, we achieve 58.5 mIoU for ADE20K semantic segmentation, and 57.9 PQ for COCO Panoptic Segmentation. Using huge FocalNet and DINO, we achieved 64.3 and 64.4 mAP on COCO minival and test-dev, respectively, establishing new SoTA on top of much larger attention-based models like Swinv2-G and BEIT-3. Code and checkpoints are available at https://github.com/microsoft/FocalNet.
translated by 谷歌翻译
在过去的十年中,CNN在电脑愿景世界中统治了至高无上,但最近,变压器一直在崛起。然而,自我关注的二次计算成本已成为实践应用中的严重问题。在没有CNN的情况下,在这种情况下已经有很多研究了,并且在这种情况下自我关注。特别地,MLP混合器是使用MLP设计的简单架构,并击中与视觉变压器相当的精度。然而,这种体系结构中唯一的归纳偏见是嵌入令牌。这叶打开了将非卷积(或非本地)电感偏差结合到架构中的可能性,因此我们使用了两个简单的想法,以便利用其捕获全局相关能力的同时将电感偏差纳入MLP混合器。一种方法是将令牌混合块垂直和水平分割。另一种方法是在一些令牌混合通道中进行空间相关性密集。通过这种方法,我们能够提高MLP混合器的准确性,同时降低其参数和计算复杂性。 RAFTMLP-S的小型模型与每个计算的参数和效率方面的基于最先进的全球MLP的模型相当。此外,我们通过利用双向插值来解决基于MLP的模型的固定输入图像分辨率的问题。我们证明这些模型可以应用于诸如物体检测的下游任务的架构的骨干。但是,它没有显着的性能,并提到了对基于全球MLP的模型的下游任务的特定MLP特定架构的需求。 pytorch版本中的源代码可用于\ url {https:/github.com/okojoalg/raft-mlp}。
translated by 谷歌翻译
视觉变压器的最新进展在基于点产生自我注意的新空间建模机制驱动的各种任务中取得了巨大成功。在本文中,我们表明,视觉变压器背后的关键要素,即输入自适应,远程和高阶空间相互作用,也可以通过基于卷积的框架有效地实现。我们介绍了递归封闭式卷积($ \ textit {g}^\ textit {n} $ conv),该卷积{n} $ conv)与封闭的卷积和递归设计执行高阶空间交互。新操作是高度灵活和可定制的,它与卷积的各种变体兼容,并将自我注意的两阶相互作用扩展到任意订单,而无需引入大量额外的计算。 $ \ textit {g}^\ textit {n} $ conv可以用作插件模块,以改善各种视觉变压器和基于卷积的模型。根据该操作,我们构建了一个名为Hornet的新型通用视觉骨干家族。关于ImageNet分类,可可对象检测和ADE20K语义分割的广泛实验表明,大黄蜂的表现优于Swin变形金刚,并具有相似的整体体系结构和训练配置的明显边距。大黄蜂还显示出对更多训练数据和更大模型大小的有利可伸缩性。除了在视觉编码器中的有效性外,我们还可以将$ \ textit {g}^\ textit {n} $ conv应用于特定于任务的解码器,并始终通过较少的计算来提高密集的预测性能。我们的结果表明,$ \ textIt {g}^\ textit {n} $ conv可以成为视觉建模的新基本模块,可有效结合视觉变形金刚和CNN的优点。代码可从https://github.com/raoyongming/hornet获得
translated by 谷歌翻译
尽管变形金刚已成功地从其语言建模起源过渡到基于图像的应用程序,但它们的二次计算复杂性仍然是一个挑战,尤其是对于密集的预测。在本文中,我们提出了一种基于内容的稀疏注意方法,以替代密集的自我注意力,旨在降低计算复杂性,同时保留对远程依赖性建模的能力。具体而言,我们聚集,然后汇总键和值代币,作为减少总代币计数的基于内容的方法。由此产生的聚类序列保留了原始信号的语义多样性,但可以以较低的计算成本进行处理。此外,我们进一步将聚类引导的注意力从单尺度扩展到多尺度,这有利于密集的预测任务。我们标记了提出的变压器体系结构固定,并证明它在各种视觉任务上实现了最新的性能,但计算成本较低,参数较少。例如,我们具有2270万参数的cluster小型模型可在Imagenet上实现83.2 \%TOP-1的精度。源代码和Imagenet模型将公开可用。
translated by 谷歌翻译
变压器在计算机视觉任务中表现出很大的潜力。常见的信念是他们的注意力令牌混合器模块对他们的能力做出了贡献。但是,最近的作品显示了变压器中的基于关注的模块可以被空间MLP所取代,由此产生的模型仍然表现得很好。基于该观察,我们假设变压器的一般架构,而不是特定的令牌混音器模块对模型的性能更为必要。为了验证这一点,我们刻意用尴尬的简单空间池汇集操作员取代变压器中的注意模块,以仅进行最基本的令牌混合。令人惊讶的是,我们观察到,派生模型称为池,在多台计算机视觉任务上实现了竞争性能。例如,在ImageNet-1K上,泳池制造器实现了82.1%的前1个精度,超越了调节的视觉变压器/ MLP样基线Deit-B / ResmmP-B24,比参数的35%/ 52%的准确度为0.3%/ 1.1%和48%/ 60%的Mac。泳道的有效性验证了我们的假设,并敦促我们启动“MetaFormer”的概念,这是一个从变压器抽象的一般架构,而无需指定令牌混音器。基于广泛的实验,我们认为MetaFormer是在视觉任务上实现最近变压器和MLP样模型的优越结果的关键球员。这项工作要求更具未来的研究,专门用于改善元形器,而不是专注于令牌混音器模块。此外,我们提出的池更换器可以作为未来的MetaFormer架构设计的起始基线。代码可在https://github.com/sail-sg/poolformer使用
translated by 谷歌翻译
最近,Vision Transformer通过推动各种视觉任务的最新技术取得了巨大的成功。视觉变压器中最具挑战性的问题之一是,图像令牌的较大序列长度会导致高计算成本(二次复杂性)。解决此问题的一个流行解决方案是使用单个合并操作来减少序列长度。本文考虑如何改善现有的视觉变压器,在这种变压器中,单个合并操作提取的合并功能似乎不太强大。为此,我们注意到,由于其在上下文抽象中的强大能力,金字塔池在各种视觉任务中已被证明是有效的。但是,在骨干网络设计中尚未探索金字塔池。为了弥合这一差距,我们建议在视觉变压器中将金字塔池汇总到多头自我注意力(MHSA)中,同时降低了序列长度并捕获强大的上下文特征。我们插入了基于池的MHSA,我们构建了一个通用视觉变压器主链,称为金字塔池变压器(P2T)。广泛的实验表明,与先前的基于CNN-和基于变压器的网络相比,当将P2T用作骨干网络时,它在各种视觉任务中显示出很大的优势。该代码将在https://github.com/yuhuan-wu/p2t上发布。
translated by 谷歌翻译
我们从实际应用的角度重新审视了现有的出色变压器。他们中的大多数甚至不如基本的重新连接系列效率那么高,并且偏离了现实的部署方案。这可能是由于当前的标准测量计算效率,例如FLOPS或参数是单方面的,次优的和对硬件的不敏感的。因此,本文直接将特定硬件的紧张延迟视为效率指标,该指标提供了涉及计算能力,内存成本和带宽的更全面的反馈。基于一系列受控实验,这项工作为面向浓度和部署的网络设计提供了四个实用指南,例如,在阶段级别,早期的变压器和晚期CNN,在Block Level的早期CNN和Late Transformer。因此,提出了一个面向Tensortrt的变压器家族,缩写为TRT-VIT。广泛的实验表明,在不同的视觉任务(例如,图像分类,对象检测和语义细分)方面,TRT-VIT显着优于现有的Convnet和视觉变压器。例如,在82.7%的Imagenet-1k Top-1精度下,TRT-VIT比CSWIN快2.7 $ \ times $,比双胞胎快2.0 $ \ times $。在MS-COCO对象检测任务上,TRT-VIT与双胞胎达到可比的性能,而推理速度则增加了2.8 $ \ times $。
translated by 谷歌翻译
香草自我注意的机制固有地依赖于预定和坚定的计算维度。这种僵化的性限制了它具有面向上下文的概括,可以带来更多的上下文提示和全球表示。为了减轻此问题,我们提出了一种可扩展的自我注意(SSA)机制,该机制利用两个缩放因素来释放查询,键和价值矩阵的维度,同时使它们不符合输入。这种可伸缩性可获得面向上下文的概括并增强对象灵敏度,从而将整个网络推向准确性和成本之间的更有效的权衡状态。此外,我们提出了一个基于窗口的自我注意事项(IWSA),该自我注意力(IWSA)通过重新合并独立的值代币并从相邻窗口中汇总空间信息来建立非重叠区域之间的相互作用。通过交替堆叠SSA和IWSA,可扩展的视觉变压器(可伸缩率)在通用视觉任务中实现最先进的性能。例如,在Imagenet-1K分类中,可伸缩率S的表现优于双胞胎-SVT-S,而Swin-T则比1.4%。
translated by 谷歌翻译
视觉变压器(VIT)最近在一系列计算机视觉任务中占据了主导地位,但训练数据效率低下,局部语义表示能力较低,而没有适当的电感偏差。卷积神经网络(CNNS)固有地捕获了区域感知语义,激发了研究人员将CNN引入VIT的架构中,以为VIT提供理想的诱导偏见。但是,嵌入在VIT中的微型CNN实现的位置是否足够好?在本文中,我们通过深入探讨混合CNNS/VIT的宏观结构如何增强层次VIT的性能。特别是,我们研究了令牌嵌入层,别名卷积嵌入(CE)的作用,并系统地揭示了CE如何在VIT中注入理想的感应偏置。此外,我们将最佳CE配置应用于最近发布的4个最先进的Vits,从而有效地增强了相应的性能。最后,释放了一个有效的混合CNN/VIT家族,称为CETNET,可以用作通用的视觉骨架。具体而言,CETNET在Imagenet-1K上获得了84.9%的TOP-1准确性(从头开始训练),可可基准上的48.6%的盒子地图和ADE20K上的51.6%MIOU,从而显着提高了相应的最新态度的性能。艺术基线。
translated by 谷歌翻译
视觉变压器由于能够捕获图像中的长期依赖性的能力而成功地应用于图像识别任务。但是,变压器与现有卷积神经网络(CNN)之间的性能和计算成本仍然存在差距。在本文中,我们旨在解决此问题,并开发一个网络,该网络不仅可以超越规范变压器,而且可以超越高性能卷积模型。我们通过利用变压器来捕获长期依赖性和CNN来建模本地特征,从而提出了一个新的基于变压器的混合网络。此外,我们将其扩展为获得一个称为CMT的模型家族,比以前的基于卷积和基于变压器的模型获得了更好的准确性和效率。特别是,我们的CMT-S在ImageNet上获得了83.5%的TOP-1精度,而在拖鞋上的拖曳率分别比现有的DEIT和EficitiveNet小14倍和2倍。拟议的CMT-S还可以很好地概括CIFAR10(99.2%),CIFAR100(91.7%),花(98.7%)以及其他具有挑战性的视觉数据集,例如可可(44.3%地图),计算成本较小。
translated by 谷歌翻译
视觉多层感知器(MLP)在计算机视觉任务中表现出了有希望的表现,并成为CNNS和Vision Transformers的主要竞争对手。他们使用令牌混合层来捕获交叉互动,而不是变形金刚使用的多头自我发项机制。然而,严重的参数化令牌混合层自然缺乏捕获局部信息和多粒性非本地关系的机制,因此它们的判别能力受到限制。为了解决这个问题,我们提出了一个新的位置空间门控单元(POSGU)。它利用经典相对位置编码(RPE)中使用的注意力公式,以有效地编码令牌混合的交叉关系。它可以成功地将视觉MLP的当前二次参数复杂度$ O(n^2)$ $ O(n^2)$ o(n)$(n)$和$ o(1)$。我们实验了两种RPE机制,并进一步提出了一个小组扩展,以实现多种环境的成就,以提高其表现力。然后,它们是一种新型视觉MLP的关键构建块,称为POSMLP。我们通过进行彻底的实验来评估所提出的方法的有效性,证明参数复杂性的提高或可比性能得到了改善或可比性。例如,对于在ImagEnet1k上训练的模型,我们实现了从72.14 \%\%\%\%的绩效提高,并且可学习的参数从$ 194M $ $ $ $ $ $ $ $ 1.182亿美元。代码可以在\ href {https://github.com/zhicaiwww/posmlp} {https://github.com/zhicaiwww/posmlp}中找到代码。
translated by 谷歌翻译
变压器最近在各种视觉任务上表现出卓越的性能。大型有时甚至全球,接收领域赋予变换器模型,并通过其CNN对应物具有更高的表示功率。然而,简单地扩大接收领域也产生了几个问题。一方面,使用致密的注意,例如,在VIT中,导致过度的记忆和计算成本,并且特征可以受到超出兴趣区域的无关紧要的影响。另一方面,PVT或SWIN变压器采用的稀疏注意是数据不可知论,可能会限制模拟长距离关系的能力。为了缓解这些问题,我们提出了一种新型可变形的自我关注模块,其中以数据相关的方式选择密钥和值对中的密钥和值对的位置。这种灵活的方案使自我关注模块能够专注于相关区域并捕获更多的信息性功能。在此基础上,我们呈现可变形的关注变压器,一般骨干模型,具有可变形关注的图像分类和密集预测任务。广泛的实验表明,我们的模型在综合基准上实现了一致的改善结果。代码可在https://github.com/leaplabthu/dat上获得。
translated by 谷歌翻译