我们人类正在进入虚拟时代,确实想将动物带到虚拟世界中。然而,计算机生成的(CGI)毛茸茸的动物受到乏味的离线渲染的限制,更不用说交互式运动控制了。在本文中,我们提出了Artemis,这是一种新型的神经建模和渲染管道,用于生成具有外观和运动合成的清晰神经宠物。我们的Artemis可以实现互动运动控制,实时动画和毛茸茸的动物的照片真实渲染。我们的Artemis的核心是神经生成的(NGI)动物引擎,该动物发动机采用了有效的基于OCTREE的动物动画和毛皮渲染的代表。然后,该动画等同于基于显式骨骼翘曲的体素级变形。我们进一步使用快速的OCTREE索引和有效的体积渲染方案来生成外观和密度特征地图。最后,我们提出了一个新颖的阴影网络,以在外观和密度特征图中生成外观和不透明度的高保真细节。对于Artemis中的运动控制模块,我们将最新动物运动捕获方法与最近的神经特征控制方案相结合。我们引入了一种有效的优化方案,以重建由多视图RGB和Vicon相机阵列捕获的真实动物的骨骼运动。我们将所有捕获的运动馈送到神经角色控制方案中,以生成具有运动样式的抽象控制信号。我们将Artemis进一步整合到支持VR耳机的现有引擎中,提供了前所未有的沉浸式体验,用户可以与各种具有生动动作和光真实外观的虚拟动物进行紧密互动。我们可以通过https://haiminluo.github.io/publication/artemis/提供我们的Artemis模型和动态毛茸茸的动物数据集。
translated by 谷歌翻译
最近,我们看到了照片真实的人类建模和渲染的神经进展取得的巨大进展。但是,将它们集成到现有的下游应用程序中的现有网络管道中仍然具有挑战性。在本文中,我们提出了一种全面的神经方法,用于从密集的多视频视频中对人类表演进行高质量重建,压缩和渲染。我们的核心直觉是用一系列高效的神经技术桥接传统的动画网格工作流程。我们首先引入一个神经表面重建器,以在几分钟内进行高质量的表面产生。它与多分辨率哈希编码的截短签名距离场(TSDF)的隐式体积渲染相结合。我们进一步提出了一个混合神经跟踪器来生成动画网格,该网格将明确的非刚性跟踪与自我监督框架中的隐式动态变形结合在一起。前者将粗糙的翘曲返回到规范空间中,而后者隐含的一个隐含物进一步预测了使用4D哈希编码的位移,如我们的重建器中。然后,我们使用获得的动画网格讨论渲染方案,从动态纹理到各种带宽设置下的Lumigraph渲染。为了在质量和带宽之间取得复杂的平衡,我们通过首先渲染6个虚拟视图来涵盖表演者,然后进行闭塞感知的神经纹理融合,提出一个分层解决方案。我们证明了我们方法在各种平台上的各种基于网格的应用程序和照片真实的自由观看体验中的功效,即,通过移动AR插入虚拟人类的表演,或通过移动AR插入真实环境,或带有VR头戴式的人才表演。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
我们提出了神经演员(NA),一种用于从任意观点和任意可控姿势的高质量合成人类的新方法。我们的方法是基于最近的神经场景表示和渲染工作,从而从仅从2D图像中学习几何形状和外观的表示。虽然现有的作品令人兴奋地呈现静态场景和动态场景的播放,具有神经隐含方法的照片 - 现实重建和人类的渲染,特别是在用户控制的新颖姿势下,仍然很困难。为了解决这个问题,我们利用一个粗体模型作为将周围的3D空间的代理放入一个规范姿势。神经辐射场从多视图视频输入中了解在规范空间中的姿势依赖几何变形和姿势和视图相关的外观效果。为了综合高保真动态几何和外观的新颖视图,我们利用身体模型上定义的2D纹理地图作为预测残余变形和动态外观的潜变量。实验表明,我们的方法能够比播放的最先进,以及新的姿势合成来实现更好的质量,并且甚至可以概括到新的姿势与训练姿势不同的姿势。此外,我们的方法还支持对合成结果的体形控制。
translated by 谷歌翻译
Humans constantly interact with objects in daily life tasks. Capturing such processes and subsequently conducting visual inferences from a fixed viewpoint suffers from occlusions, shape and texture ambiguities, motions, etc. To mitigate the problem, it is essential to build a training dataset that captures free-viewpoint interactions. We construct a dense multi-view dome to acquire a complex human object interaction dataset, named HODome, that consists of $\sim$75M frames on 10 subjects interacting with 23 objects. To process the HODome dataset, we develop NeuralDome, a layer-wise neural processing pipeline tailored for multi-view video inputs to conduct accurate tracking, geometry reconstruction and free-view rendering, for both human subjects and objects. Extensive experiments on the HODome dataset demonstrate the effectiveness of NeuralDome on a variety of inference, modeling, and rendering tasks. Both the dataset and the NeuralDome tools will be disseminated to the community for further development.
translated by 谷歌翻译
最近的神经人类表示可以产生高质量的多视图渲染,但需要使用密集的多视图输入和昂贵的培训。因此,它们在很大程度上仅限于静态模型,因为每个帧都是不可行的。我们展示了人类学 - 一种普遍的神经表示 - 用于高保真自由观察动态人类的合成。类似于IBRNET如何通过避免每场景训练来帮助NERF,Humannerf跨多视图输入采用聚合像素对准特征,以及用于解决动态运动的姿势嵌入的非刚性变形场。原始人物员已经可以在稀疏视频输入的稀疏视频输入上产生合理的渲染。为了进一步提高渲染质量,我们使用外观混合模块增强了我们的解决方案,用于组合神经体积渲染和神经纹理混合的益处。各种多视图动态人类数据集的广泛实验证明了我们在挑战运动中合成照片 - 现实自由观点的方法和非常稀疏的相机视图输入中的普遍性和有效性。
translated by 谷歌翻译
对于场景重建和新型视图综合的数量表示形式的普及最近,人们的普及使重点放在以高视觉质量和实时为实时的体积内容动画上。尽管基于学习功能的隐性变形方法可以产生令人印象深刻的结果,但它们是艺术家和内容创建者的“黑匣子”,但它们需要大量的培训数据才能有意义地概括,并且在培训数据之外不会产生现实的外推。在这项工作中,我们通过引入实时的音量变形方法来解决这些问题,该方法是实时的,易于使用现成的软件编辑,并且可以令人信服地推断出来。为了证明我们方法的多功能性,我们将其应用于两种情况:基于物理的对象变形和触发性,其中使用Blendshapes控制着头像。我们还进行了彻底的实验,表明我们的方法与两种体积方法相比,结合了基于网格变形的隐式变形和方法。
translated by 谷歌翻译
我们向渲染和时间(4D)重建人类的渲染和时间(4D)重建的神经辐射场,通过稀疏的摄像机捕获或甚至来自单眼视频。我们的方法将思想与神经场景表示,新颖的综合合成和隐式统计几何人称的人类表示相结合,耦合使用新颖的损失功能。在先前使用符号距离功能表示的结构化隐式人体模型,而不是使用统一的占用率来学习具有统一占用的光域字段。这使我们能够从稀疏视图中稳健地融合信息,并概括超出在训练中观察到的姿势或视图。此外,我们应用几何限制以共同学习观察到的主题的结构 - 包括身体和衣服 - 并将辐射场正规化为几何合理的解决方案。在多个数据集上的广泛实验证明了我们方法的稳健性和准确性,其概括能力显着超出了一系列的姿势和视图,以及超出所观察到的形状的统计外推。
translated by 谷歌翻译
创建高质量的动画和可重新可靠的3D人体化身的独特挑战是对人的眼睛进行建模。合成眼睛的挑战是多重的,因为它需要1)适当的表示眼和眼周区域的适当表示,以进行连贯的视点合成,能够表示弥漫性,折射和高度反射表面,2)2)脱离皮肤和眼睛外观这样的照明使其可以在新的照明条件下呈现,3)捕获眼球运动和周围皮肤的变形以使重新注视。传统上,这些挑战需要使用昂贵且繁琐的捕获设置来获得高质量的结果,即使那样,整体上的眼睛区域建模仍然难以捉摸。我们提出了一种新颖的几何形状和外观表示形式,该形式仅使用一组稀疏的灯光和摄像头,可以捕获高保真的捕获和感性动画,观察眼睛区域的综合和重新定位。我们的杂种表示将眼球的显式参数表面模型与眼周区域和眼内部的隐式变形体积表示结合在一起。这种新颖的混合模型旨在解决具有挑战性的面部面积的各个部分 - 明确的眼球表面允许在角膜处建模折射和高频镜面反射,而隐性表示非常适合通过模拟低频皮肤反射。球形谐波可以代表非表面结构,例如头发或弥漫性体积物体,这两者都是显式表面模型的挑战。我们表明,对于高分辨率的眼睛特写,我们的模型可以从看不见的照明条件下的新颖观点中综合高保真动画的目光。
translated by 谷歌翻译
where the highest resolution is required, using facial performance capture as a case in point.
translated by 谷歌翻译
隐式辐射功能作为重建和渲染3D场景的照片真实观点的强大场景表示形式出现。但是,这些表示的编辑性差。另一方面,诸如多边形网格之类的显式表示允许易于编辑,但不适合重建动态的人头中的准确细节,例如精细的面部特征,头发,牙齿,牙齿和眼睛。在这项工作中,我们提出了神经参数化(NEP),这是一种混合表示,提供了隐式和显式方法的优势。 NEP能够进行照片真实的渲染,同时允许对场景的几何形状和外观进行细粒度编辑。我们首先通过将3D几何形状参数化为2D纹理空间来解开几何形状和外观。我们通过引入显式线性变形层来启用几何编辑性。变形由一组稀疏的密钥点控制,可以明确和直观地移位以编辑几何形状。对于外观,我们开发了一个混合2D纹理,该纹理由明确的纹理图组成,以易于编辑和隐式视图以及时间相关的残差,以建模时间和视图变化。我们将我们的方法与几个重建和编辑基线进行比较。结果表明,NEP在保持高编辑性的同时达到了几乎相同的渲染精度。
translated by 谷歌翻译
本文解决了从多视频视频中重建动画人类模型的挑战。最近的一些作品提出,将一个非刚性变形的场景分解为规范的神经辐射场和一组变形场,它们映射观察空间指向规范空间,从而使它们能够从图像中学习动态场景。但是,它们代表变形场作为转换矢量场或SE(3)字段,这使得优化高度不受限制。此外,这些表示无法通过输入动议明确控制。取而代之的是,我们基于线性混合剥皮算法引入了一个姿势驱动的变形场,该算法结合了混合重量场和3D人类骨架,以产生观察到的对应对应。由于3D人类骨骼更容易观察到,因此它们可以正规化变形场的学习。此外,可以通过输入骨骼运动来控制姿势驱动的变形场,以生成新的变形字段来动画规范人类模型。实验表明,我们的方法显着优于最近的人类建模方法。该代码可在https://zju3dv.github.io/animatable_nerf/上获得。
translated by 谷歌翻译
本文旨在减少透明辐射场的渲染时间。一些最近的作品用图像编码器配备了神经辐射字段,能够跨越场景概括,这避免了每场景优化。但是,它们的渲染过程通常很慢。主要因素是,在推断辐射场时,它们在空间中的大量点。在本文中,我们介绍了一个混合场景表示,它结合了最佳的隐式辐射场和显式深度映射,以便有效渲染。具体地,我们首先构建级联成本量,以有效地预测场景的粗糙几何形状。粗糙几何允许我们在场景表面附近的几个点来样,并显着提高渲染速度。该过程是完全可疑的,使我们能够仅从RGB图像共同学习深度预测和辐射现场网络。实验表明,该方法在DTU,真正的前瞻性和NERF合成数据集上展示了最先进的性能,而不是比以前的最可推广的辐射现场方法快至少50倍。我们还展示了我们的方法实时综合动态人类执行者的自由观点视频。代码将在https://zju3dv.github.io/enerf/处提供。
translated by 谷歌翻译
View-dependent effects such as reflections pose a substantial challenge for image-based and neural rendering algorithms. Above all, curved reflectors are particularly hard, as they lead to highly non-linear reflection flows as the camera moves. We introduce a new point-based representation to compute Neural Point Catacaustics allowing novel-view synthesis of scenes with curved reflectors, from a set of casually-captured input photos. At the core of our method is a neural warp field that models catacaustic trajectories of reflections, so complex specular effects can be rendered using efficient point splatting in conjunction with a neural renderer. One of our key contributions is the explicit representation of reflections with a reflection point cloud which is displaced by the neural warp field, and a primary point cloud which is optimized to represent the rest of the scene. After a short manual annotation step, our approach allows interactive high-quality renderings of novel views with accurate reflection flow. Additionally, the explicit representation of reflection flow supports several forms of scene manipulation in captured scenes, such as reflection editing, cloning of specular objects, reflection tracking across views, and comfortable stereo viewing. We provide the source code and other supplemental material on https://repo-sam.inria.fr/ fungraph/neural_catacaustics/
translated by 谷歌翻译
神经量渲染能够在自由观看中的人类表演者的照片真实效果图,这是沉浸式VR/AR应用中的关键任务。但是,这种做法受到渲染过程中高计算成本的严重限制。为了解决这个问题,我们提出了紫外线量,这是一种新方法,可以实时呈现人类表演者的可编辑免费视频视频。它将高频(即非平滑)的外观与3D体积分开,并将其编码为2D神经纹理堆栈(NTS)。光滑的紫外线量允许更小且较浅的神经网络获得3D的密度和纹理坐标,同时在2D NT中捕获详细的外观。为了编辑性,参数化的人类模型与平滑纹理坐标之间的映射使我们可以更好地对新型姿势和形状进行更好的概括。此外,NTS的使用启用了有趣的应用程序,例如重新启动。关于CMU Panoptic,ZJU MOCAP和H36M数据集的广泛实验表明,我们的模型平均可以在30fps中呈现960 * 540张图像,并具有可比的照片现实主义与先进方法。该项目和补充材料可从https://github.com/fanegg/uv-volumes获得。
translated by 谷歌翻译
神经辐射场(NERF)最近在新型视图合成中取得了令人印象深刻的结果。但是,以前的NERF作品主要关注以对象为中心的方案。在这项工作中,我们提出了360ROAM,这是一种新颖的场景级NERF系统,可以实时合成大型室内场景的图像并支持VR漫游。我们的系统首先从多个输入$ 360^\ circ $图像构建全向神经辐射场360NERF。然后,我们逐步估算一个3D概率的占用图,该概率占用图代表了空间密度形式的场景几何形状。跳过空的空间和上采样占据的体素本质上可以使我们通过以几何学意识的方式使用360NERF加速量渲染。此外,我们使用自适应划分和扭曲策略来减少和调整辐射场,以进一步改进。从占用地图中提取的场景的平面图可以为射线采样提供指导,并促进现实的漫游体验。为了显示我们系统的功效,我们在各种场景中收集了$ 360^\ Circ $图像数据集并进行广泛的实验。基线之间的定量和定性比较说明了我们在复杂室内场景的新型视图合成中的主要表现。
translated by 谷歌翻译
Image view synthesis has seen great success in reconstructing photorealistic visuals, thanks to deep learning and various novel representations. The next key step in immersive virtual experiences is view synthesis of dynamic scenes. However, several challenges exist due to the lack of high-quality training datasets, and the additional time dimension for videos of dynamic scenes. To address this issue, we introduce a multi-view video dataset, captured with a custom 10-camera rig in 120FPS. The dataset contains 96 high-quality scenes showing various visual effects and human interactions in outdoor scenes. We develop a new algorithm, Deep 3D Mask Volume, which enables temporally-stable view extrapolation from binocular videos of dynamic scenes, captured by static cameras. Our algorithm addresses the temporal inconsistency of disocclusions by identifying the error-prone areas with a 3D mask volume, and replaces them with static background observed throughout the video. Our method enables manipulation in 3D space as opposed to simple 2D masks, We demonstrate better temporal stability than frame-by-frame static view synthesis methods, or those that use 2D masks. The resulting view synthesis videos show minimal flickering artifacts and allow for larger translational movements.
translated by 谷歌翻译
我们提出了神经可变形场(NDF),这是一种从多视频视频中进行动态人类数字化的新表示形式。最近的作品提出,代表具有共同的规范神经辐射场的动态人体,该范围与变形场估计相结合了观察空间。但是,学到的规范表示是静态的,变形场的当前设计无法表示大型运动或详细的几何变化。在本文中,我们建议学习一个围绕合适的参数体模型包裹的神经可变形场,以代表动态人体。NDF通过基础参考表面在空间上对齐。然后,学会了神经网络将其映射到NDF的动力学。提出的NDF表示可以通过新颖的观点和新颖的姿势合成数字化的表演者,并具有详细且合理的动态外观。实验表明,我们的方法明显优于最近的人类合成方法。
translated by 谷歌翻译
逼真的触觉需要高保真的身体建模和忠实的驾驶才能使动态合成的外观与现实无法区分。在这项工作中,我们提出了一个端到端框架,该框架解决了建模和推动真实人的全身化身方面的两个核心挑战。一个挑战是驾驶头像,同时忠实地遵守细节和动态,而这些细节和动态无法被全球低维参数化(例如身体姿势)所捕捉。我们的方法支持驾驶穿着皱纹和运动的衣服化身,而真正的驾驶表演者展出了训练语料库。与现有的全局状态表示或非参数屏幕空间方法不同,我们介绍了Texel对准功能 - 一种本地化表示,可以利用基于骨架的参数模型的结构先验和同时观察到的稀疏图像信号。另一个挑战是建模临时连贯的衣服头像,通常需要精确的表面跟踪。为了避免这种情况,我们通过将体积原语的混合物扩展到清晰的物体,提出了一种新型的体积化头像表示。通过明确合并表达,我们的方法自然而然地概括了看不见的姿势。我们还介绍了局部视点条件,从而导致了依赖视图的外观的概括。拟议的体积表示不需要高质量的网格跟踪作为先决条件,并且与基于网格的对应物相比,具有显着的质量改进。在我们的实验中,我们仔细研究了我们的设计选择,并证明了方法的功效,超过了最新方法在挑战驾驶方案方面的最新方法。
translated by 谷歌翻译
Photo-realistic free-viewpoint rendering of real-world scenes using classical computer graphics techniques is challenging, because it requires the difficult step of capturing detailed appearance and geometry models. Recent studies have demonstrated promising results by learning scene representations that implicitly encode both geometry and appearance without 3D supervision. However, existing approaches in practice often show blurry renderings caused by the limited network capacity or the difficulty in finding accurate intersections of camera rays with the scene geometry. Synthesizing high-resolution imagery from these representations often requires time-consuming optical ray marching. In this work, we introduce Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering. NSVF defines a set of voxel-bounded implicit fields organized in a sparse voxel octree to model local properties in each cell. We progressively learn the underlying voxel structures with a diffentiable ray-marching operation from only a set of posed RGB images. With the sparse voxel octree structure, rendering novel views can be accelerated by skipping the voxels containing no relevant scene content. Our method is typically over 10 times faster than the state-of-the-art (namely, NeRF (Mildenhall et al., 2020)) at inference time while achieving higher quality results. Furthermore, by utilizing an explicit sparse voxel representation, our method can easily be applied to scene editing and scene composition. We also demonstrate several challenging tasks, including multi-scene learning, free-viewpoint rendering of a moving human, and large-scale scene rendering. Code and data are available at our website: https://github.com/facebookresearch/NSVF.
translated by 谷歌翻译