我们提出了一种新颖的机器学习体系结构,双光谱神经网络(BNNS),用于学习数据的数据表示,这些数据是对定义信号的空间中组的行为不变的。该模型结合了双光谱的ANSATZ,这是一个完整的分析定义的组不变的,也就是说,它保留了所有信号结构,同时仅删除了由于组动作而造成的变化。在这里,我们证明了BNN能够在数据中发现任意的交换群体结构,并且训练有素的模型学习了组的不可减至表示,从而可以恢复组Cayley表。值得注意的是,受过训练的网络学会了对这些组的双偏见,因此具有分析对象的稳健性,完整性和通用性。
translated by 谷歌翻译
模棱两可的神经网络,其隐藏的特征根据G组作用于数据的表示,表现出训练效率和提高的概括性能。在这项工作中,我们将群体不变和模棱两可的表示学习扩展到无监督的深度学习领域。我们根据编码器框架提出了一种通用学习策略,其中潜在表示以不变的术语和模棱两可的组动作组件分开。关键的想法是,网络学会通过学习预测适当的小组操作来对齐输入和输出姿势以解决重建任务的适当组动作来编码和从组不变表示形式进行编码和解码数据。我们在Equivariant编码器上得出必要的条件,并提出了对任何G(离散且连续的)有效的构造。我们明确描述了我们的旋转,翻译和排列的构造。我们在采用不同网络体系结构的各种数据类型的各种实验中测试了方法的有效性和鲁棒性。
translated by 谷歌翻译
We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symmetries. G-CNNs use G-convolutions, a new type of layer that enjoys a substantially higher degree of weight sharing than regular convolution layers. G-convolutions increase the expressive capacity of the network without increasing the number of parameters. Group convolution layers are easy to use and can be implemented with negligible computational overhead for discrete groups generated by translations, reflections and rotations. G-CNNs achieve state of the art results on CI-FAR10 and rotated MNIST.
translated by 谷歌翻译
合并对称性可以通过定义通过转换相关的数据样本的等效类别来导致高度数据效率和可推广的模型。但是,表征转换如何在输入数据上作用通常很困难,从而限制了模型模型的适用性。我们提出了编码输入空间(例如图像)的学习对称嵌入网络(SENS),我们不知道转换的效果(例如旋转),以在这些操作下以已知方式转换的特征空间。可以通过模棱两可的任务网络端对端训练该网络,以学习明确的对称表示。我们在具有3种不同形式的对称形式的模棱两可的过渡模型的背景下验证了这种方法。我们的实验表明,SENS有助于将模棱两可的网络应用于具有复杂对称表示的数据。此外,相对于全等级和非等价基线的准确性和泛化可以提高准确性和概括。
translated by 谷歌翻译
Recent work has constructed neural networks that are equivariant to continuous symmetry groups such as 2D and 3D rotations. This is accomplished using explicit Lie group representations to derive the equivariant kernels and nonlinearities. We present three contributions motivated by frontier applications of equivariance beyond rotations and translations. First, we relax the requirement for explicit Lie group representations with a novel algorithm that finds representations of arbitrary Lie groups given only the structure constants of the associated Lie algebra. Second, we provide a self-contained method and software for building Lie group-equivariant neural networks using these representations. Third, we contribute a novel benchmark dataset for classifying objects from relativistic point clouds, and apply our methods to construct the first object-tracking model equivariant to the Poincar\'e group.
translated by 谷歌翻译
在这项工作中,我们寻求弥合神经网络中地形组织和设备的概念。为实现这一目标,我们介绍了一种新颖的方法,用于有效地培训具有地形组织的潜变量的深度生成模型。我们表明,这种模型确实学会根据突出的特征,例如在MNIST上的数字,宽度和样式等突出特征来组织激活。此外,通过地形组织随着时间的推移(即时间相干),我们展示了如何鼓励预定义的潜空间转换运营商,以便观察到的转换输入序列 - 这是一种无监督的学习设备的原始形式。我们展示了该模型直接从序列中直接从序列中学习大约成反比的特征(即“胶囊”)并在相应变换测试序列上实现更高的似然性。通过测量推理网络的近似扩展和序列变换来定量验证标准验证。最后,我们展示了复杂转化的近似值,扩大了现有组的常量神经网络的能力。
translated by 谷歌翻译
从早期图像处理到现代计算成像,成功的模型和算法都依赖于自然信号的基本属性:对称性。在这里,对称是指信号集的不变性属性,例如翻译,旋转或缩放等转换。对称性也可以以模棱两可的形式纳入深度神经网络中,从而可以进行更多的数据效率学习。虽然近年来端到端的图像分类网络的设计方面取得了重要进展,但计算成像引入了对等效网络解决方案的独特挑战,因为我们通常只通过一些嘈杂的不良反向操作员观察图像,可能不是均等的。我们回顾了现象成像的新兴领域,并展示它如何提供改进的概括和新成像机会。在此过程中,我们展示了采集物理学与小组动作之间的相互作用,以及与迭代重建,盲目的压缩感应和自我监督学习之间的联系。
translated by 谷歌翻译
Convolutional neural networks have been extremely successful in the image recognition domain because they ensure equivariance to translations. There have been many recent attempts to generalize this framework to other domains, including graphs and data lying on manifolds. In this paper we give a rigorous, theoretical treatment of convolution and equivariance in neural networks with respect to not just translations, but the action of any compact group. Our main result is to prove that (given some natural constraints) convolutional structure is not just a sufficient, but also a necessary condition for equivariance to the action of a compact group. Our exposition makes use of concepts from representation theory and noncommutative harmonic analysis and derives new generalized convolution formulae.
translated by 谷歌翻译
现有的等分性神经网络需要先前了解对称组和连续组的离散化。我们建议使用Lie代数(无限发电机)而不是谎言群体。我们的模型,Lie代数卷积网络(L-Chir)可以自动发现对称性,并不需要该组的离散化。我们展示L-CONC可以作为构建任何组的建筑块,以构建任何组的馈电架构。CNN和图表卷积网络都可以用适当的组表示为L-DIV。我们发现L-CONC和物理学之间的直接连接:(1)组不变损失概括场理论(2)欧拉拉格朗法令方程测量鲁棒性,(3)稳定性导致保护法和挪威尔特。这些连接开辟了新的途径用于设计更多普遍等级的网络并将其应用于物理科学中的重要问题
translated by 谷歌翻译
小组卷积神经网络(G-CNN)是卷积神经网络(CNN)的概括,通过在其体系结构中明确编码旋转和排列,在广泛的技术应用中脱颖而出。尽管G-CNN的成功是由它们的\ emph {emplapicit}对称偏见驱动的,但最近的一项工作表明,\ emph {隐式}对特定体系结构的偏差是理解过度参数化神经网的概​​括的关键。在这种情况下,我们表明,通过梯度下降训练了二进制分类的$ L $ layer全宽线性G-CNN,将二进制分类收敛到具有低级别傅立叶矩阵系数的解决方案,并由$ 2/l $ -schatten矩阵规范正规化。我们的工作严格概括了先前对线性CNN的隐性偏差对线性G-CNN的隐性分析,包括所有有限组,包括非交换组的挑战性设置(例如排列),以及无限组的频段限制G-CNN 。我们通过在各个组上实验验证定理,并在经验上探索更现实的非线性网络,该网络在局部捕获了相似的正则化模式。最后,我们通过不确定性原理提供了对傅立叶空间隐式正则化的直观解释。
translated by 谷歌翻译
生成建模旨在揭示产生观察到的数据的潜在因素,这些数据通常可以被建模为自然对称性,这些对称性是通过不变和对某些转型定律等效的表现出来的。但是,当前代表这些对称性的方法是在需要构建模棱两可矢量场的连续正式化流中所掩盖的 - 抑制了它们在常规的高维生成建模域(如自然图像)中的简单应用。在本文中,我们专注于使用离散层建立归一化流量。首先,我们从理论上证明了对紧凑空间的紧凑型组的模棱两可的图。我们进一步介绍了三个新的品牌流:$ g $ - 剩余的流量,$ g $ - 耦合流量和$ g $ - inverse自动回旋的回旋流量,可以提升经典的残留剩余,耦合和反向自动性流量,并带有等效的地图, $。从某种意义上说,我们证明$ g $ equivariant的差异性可以通过$ g $ - $ residual流量映射,我们的$ g $ - 剩余流量也很普遍。最后,我们首次在诸如CIFAR-10之类的图像数据集中对我们的理论见解进行了补充,并显示出$ G $ equivariant有限的有限流量,从而提高了数据效率,更快的收敛性和提高的可能性估计。
translated by 谷歌翻译
通过深度生成建模的学习表示是动态建模的强大方法,以发现数据的最简化和压缩的基础描述,然后将其用于诸如预测的其他任务。大多数学习任务具有内在的对称性,即输入变换将输出保持不变,或输出经过类似的转换。然而,学习过程通常是对这些对称性的不知情。因此,单独转换输入的学习表示可能不会有意义地相关。在本文中,我们提出了一种如此(3)个等级的深层动态模型(EQDDM),用于运动预测,用于在嵌入随对称转换的情况下变化的意义上学习输入空间的结构化表示。 EQDDM配备了等级网络,可参数化状态空间发射和转换模型。我们展示了在各种运动数据上提出了拟议模型的卓越预测性能。
translated by 谷歌翻译
Translating or rotating an input image should not affect the results of many computer vision tasks. Convolutional neural networks (CNNs) are already translation equivariant: input image translations produce proportionate feature map translations. This is not the case for rotations. Global rotation equivariance is typically sought through data augmentation, but patch-wise equivariance is more difficult. We present Harmonic Networks or H-Nets, a CNN exhibiting equivariance to patch-wise translation and 360-rotation. We achieve this by replacing regular CNN filters with circular harmonics, returning a maximal response and orientation for every receptive field patch.H-Nets use a rich, parameter-efficient and fixed computational complexity representation, and we show that deep feature maps within the network encode complicated rotational invariants. We demonstrate that our layers are general enough to be used in conjunction with the latest architectures and techniques, such as deep supervision and batch normalization. We also achieve state-of-the-art classification on rotated-MNIST, and competitive results on other benchmark challenges.
translated by 谷歌翻译
我们分析了旋转模糊性在应​​用于球形图像的卷积神经网络(CNN)中的作用。我们比较了被称为S2CNN的组等效网络的性能和经过越来越多的数据增强量的标准非等级CNN。所选的体系结构可以视为相应设计范式的基线参考。我们的模型对投影到球体的MNIST或FashionMnist数据集进行了训练和评估。对于固有旋转不变的图像分类的任务,我们发现,通过大大增加数据增强量和网络的大小,标准CNN可以至少达到与Equivariant网络相同的性能。相比之下,对于固有的等效性语义分割任务,非等级网络的表现始终超过具有较少参数的模棱两可的网络。我们还分析和比较了不同网络的推理潜伏期和培训时间,从而实现了对等效架构和数据扩展之间的详细权衡考虑,以解决实际问题。实验中使用的均衡球网络可在https://github.com/janegerken/sem_seg_s2cnn上获得。
translated by 谷歌翻译
从低级视觉理论中出现,可说的过滤器在先前的卷积神经网络上的工作中发现了对应物,等同于僵化的转换。在我们的工作中,我们提出了一种基于球形决策表面的神经元组成的基于馈送的可转向学习方法,并在点云上运行。这种球形神经元是通过欧几里得空间的共形嵌入来获得的,最近在点集的学习表示中被重新审视。为了关注3D几何形状,我们利用球形神经元的等轴测特性,并得出3D可识别性约束。在训练球形神经元以在规范方向上分类点云之后,我们使用四面体基础来使神经元四倍,并构建旋转 - 等级的球形滤波器库。然后,我们应用派生的约束来插值过滤器库输出,从而获得旋转不变的网络。最后,我们使用合成点集和现实世界3D骨架数据来验证我们的理论发现。该代码可在https://github.com/pavlo-melnyk/steerable-3d-neurons上找到。
translated by 谷歌翻译
标准卷积神经网络(CNN)的卷积层与翻译一样。然而,卷积和完全连接的层与其他仿射几何变换并不是等等的或不变的。最近,提出了一类新的CNN,其中CNN的常规层被均衡卷积,合并和批量归一化层代替。 eprovariant神经网络中的最终分类层对于不同的仿射几何变换(例如旋转,反射和翻译)是不变的,并且标量值是通过消除过滤器响应的空间尺寸,使用卷积和向下缩采样的整个网络或平均值来获得。接管过滤器响应。在这项工作中,我们建议整合正交力矩,该矩将功能的高阶统计数据作为编码全局不变性在旋转,反射和翻译中的有效手段。结果,网络的中间层变得模棱两可,而分类层变得不变。出于这个目的,考虑使用最广泛使用的Zernike,伪菜单和正交傅立叶粉刺矩。通过在旋转的MNIST和CIFAR10数据集上集成了组等级CNN(G-CNN)的体系结构中的不变过渡和完全连接的层来评估所提出的工作的有效性。
translated by 谷歌翻译
我们研究小组对称性如何帮助提高端到端可区分计划算法的数据效率和概括,特别是在2D机器人路径计划问题上:导航和操纵。我们首先从价值迭代网络(VIN)正式使用卷积网络进行路径计划,因为它避免了明确构建等价类别并启用端到端计划。然后,我们证明价值迭代可以始终表示为(2D)路径计划的某种卷积形式,并将结果范式命名为对称范围(SYMPLAN)。在实施中,我们使用可进入的卷积网络来合并对称性。我们在导航和操纵方面的算法,具有给定或学习的地图,提高了与非等级同行VIN和GPPN相比,大幅度利润的训练效率和概括性能。
translated by 谷歌翻译
生成的对抗网络由于研究人员的最新性能在生成新图像时仅使用目标分布的数据集,因此引起了研究人员的关注。已经表明,真实图像的频谱和假图像之间存在差异。由于傅立叶变换是一种徒图映射,因此说该模型在学习原始分布方面有一个重大问题是一个公平的结论。在这项工作中,我们研究了当前gan的架构和数学理论中提到的缺点的可能原因。然后,我们提出了一个新模型,以减少实际图像和假图像频谱之间的差异。为此,我们使用几何深度学习的蓝图为频域设计了一个全新的架构。然后,我们通过将原始数据的傅立叶域表示作为训练过程中的主要特征来表明生成图像的质量的有希望的改善。
translated by 谷歌翻译
我们介绍了CheBlieset,一种对(各向异性)歧管的组成的方法。对基于GRAP和基于组的神经网络的成功进行冲浪,我们利用了几何深度学习领域的最新发展,以推导出一种新的方法来利用数据中的任何各向异性。通过离散映射的谎言组,我们开发由各向异性卷积层(Chebyshev卷积),空间汇集和解凝层制成的图形神经网络,以及全球汇集层。集团的标准因素是通过具有各向异性左不变性的黎曼距离的图形上的等级和不变的运算符来实现的。由于其简单的形式,Riemannian公制可以在空间和方向域中模拟任何各向异性。这种对Riemannian度量的各向异性的控制允许平衡图形卷积层的不变性(各向异性度量)的平衡(各向异性指标)。因此,我们打开大门以更好地了解各向异性特性。此外,我们经验证明了在CIFAR10上的各向异性参数的存在(数据依赖性)甜点。这一关键的结果是通过利用数据中的各向异性属性来获得福利的证据。我们还评估了在STL10(图像数据)和ClimateNet(球面数据)上的这种方法的可扩展性,显示了对不同任务的显着适应性。
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译