深度学习(DL)在数字病理应用中表现出很大的潜力。诊断DL的解决方案的鲁棒性对于安全的临床部署至关重要。在这项工作中,我们通过增加数字病理学中的DL预测的不确定性估计,可以通过提高一般预测性能或通过检测错误预测性来导致临床应用的价值增加。我们将模型 - 集成方法(MC辍学和深度集成)的有效性与模型 - 不可知方法(测试时间增强,TTA)进行比较。此外,比较了四个不确定性度量。我们的实验专注于两个域改变情景:转移到不同的医疗中心和癌症的不足亚型。我们的结果表明,不确定性估计可以增加一些可靠性并降低对分类阈值选择的敏感性。虽然高级指标和深度集合在我们的比较中表现最佳,但更简单的度量和TTA的附加值很小。重要的是,所有评估的不确定度估计方法的益处通过域移位减少。
translated by 谷歌翻译
In the past years, deep learning has seen an increase of usage in the domain of histopathological applications. However, while these approaches have shown great potential, in high-risk environments deep learning models need to be able to judge their own uncertainty and be able to reject inputs when there is a significant chance of misclassification. In this work, we conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole-Slide-Images under domain shift using the H\&E stained Camelyon17 breast cancer dataset. Although it is known that histopathological data can be subject to strong domain shift and label noise, to our knowledge this is the first work that compares the most common methods for uncertainty estimation under these aspects. In our experiments, we compare Stochastic Variational Inference, Monte-Carlo Dropout, Deep Ensembles, Test-Time Data Augmentation as well as combinations thereof. We observe that ensembles of methods generally lead to higher accuracies and better calibration and that Test-Time Data Augmentation can be a promising alternative when choosing an appropriate set of augmentations. Across methods, a rejection of the most uncertain tiles leads to a significant increase in classification accuracy on both in-distribution as well as out-of-distribution data. Furthermore, we conduct experiments comparing these methods under varying conditions of label noise. We observe that the border regions of the Camelyon17 dataset are subject to label noise and evaluate the robustness of the included methods against different noise levels. Lastly, we publish our code framework to facilitate further research on uncertainty estimation on histopathological data.
translated by 谷歌翻译
人工智能(AI)辅助方法在风险领域(例如疾病诊断)受到了很多关注。与疾病类型的分类不同,将医学图像归类为良性或恶性肿瘤是一项精细的任务。但是,大多数研究仅着重于提高诊断准确性,而忽略了模型可靠性的评估,从而限制了其临床应用。对于临床实践,校准对过度参数化的模型和固有的噪声极为明显地提出了低数据表格的主要挑战。特别是,我们发现建模与数据相关的不确定性更有利于置信度校准。与测试时间增强(TTA)相比,我们通过混合数据增强策略提出了一个修改后的自举损失(BS损耗)功能,可以更好地校准预测性不确定性并捕获数据分布转换而无需额外推断时间。我们的实验表明,与标准数据增强,深度集合和MC辍学相比,混合(BSM)模型的BS损失(BSM)模型可以将预期校准误差(ECE)减半。在BSM模型下,不确定性与相似性之间的相关性高达-0.4428。此外,BSM模型能够感知室外数据的语义距离,这表明在现实世界中的临床实践中潜力很高。
translated by 谷歌翻译
Objective: Convolutional neural networks (CNNs) have demonstrated promise in automated cardiac magnetic resonance image segmentation. However, when using CNNs in a large real-world dataset, it is important to quantify segmentation uncertainty and identify segmentations which could be problematic. In this work, we performed a systematic study of Bayesian and non-Bayesian methods for estimating uncertainty in segmentation neural networks. Methods: We evaluated Bayes by Backprop, Monte Carlo Dropout, Deep Ensembles, and Stochastic Segmentation Networks in terms of segmentation accuracy, probability calibration, uncertainty on out-of-distribution images, and segmentation quality control. Results: We observed that Deep Ensembles outperformed the other methods except for images with heavy noise and blurring distortions. We showed that Bayes by Backprop is more robust to noise distortions while Stochastic Segmentation Networks are more resistant to blurring distortions. For segmentation quality control, we showed that segmentation uncertainty is correlated with segmentation accuracy for all the methods. With the incorporation of uncertainty estimates, we were able to reduce the percentage of poor segmentation to 5% by flagging 31--48% of the most uncertain segmentations for manual review, substantially lower than random review without using neural network uncertainty (reviewing 75--78% of all images). Conclusion: This work provides a comprehensive evaluation of uncertainty estimation methods and showed that Deep Ensembles outperformed other methods in most cases. Significance: Neural network uncertainty measures can help identify potentially inaccurate segmentations and alert users for manual review.
translated by 谷歌翻译
与其他癌症相比,胰腺癌具有最差的预后之一,因为它们已被诊断出癌症已朝着后期阶段发展。当前用于诊断胰腺腺癌的手动组织学分级是耗时的,通常会导致误诊。在数字病理学中,基于AI的癌症分级必须在预测和不确定性量化方面非常准确,以提高可靠性和解释性,对于获得临床医生对技术的信任至关重要。我们提出了MGG自动化胰腺癌分级的贝叶斯卷积神经网络,他对图像进行了染色,以估计模型预测中的不确定性。我们表明,估计的不确定性与预测误差相关。具体而言,它对于使用权衡分类准确性 - 拒绝权衡和错误分类成本的度量标准来设置验收阈值很有用,可以通过超参数控制,并且可以在临床环境中使用。
translated by 谷歌翻译
深度学习技术在检测医学图像中的对象方面取得了成功,但仍然遭受虚假阳性预测,可能会阻碍准确的诊断。神经网络输出的估计不确定性已用于标记不正确的预测。我们研究了来自神经网络不确定性估计的功能和基于形状的特征,这些特征是根据二进制预测计算出的,从二进制预测中,通过开发基于分类的后处理步骤来减少肝病病变检测中的假阳性,以用于不同的不确定性估计方法。我们证明了两个数据集上所有不确定性估计方法的神经网络的病变检测性能(相对于F1分数)的改善,分别包括腹部MR和CT图像。我们表明,根据神经网络不确定性估计计算的功能往往不会有助于降低假阳性。我们的结果表明,诸如阶级不平衡(真实假阳性比率)和从不确定性图提取的基于形状的特征之类的因素在区分假阳性和真实阳性预测方面起着重要作用
translated by 谷歌翻译
Deep neural networks (NNs) are powerful black box predictors that have recently achieved impressive performance on a wide spectrum of tasks. Quantifying predictive uncertainty in NNs is a challenging and yet unsolved problem. Bayesian NNs, which learn a distribution over weights, are currently the state-of-the-art for estimating predictive uncertainty; however these require significant modifications to the training procedure and are computationally expensive compared to standard (non-Bayesian) NNs. We propose an alternative to Bayesian NNs that is simple to implement, readily parallelizable, requires very little hyperparameter tuning, and yields high quality predictive uncertainty estimates. Through a series of experiments on classification and regression benchmarks, we demonstrate that our method produces well-calibrated uncertainty estimates which are as good or better than approximate Bayesian NNs. To assess robustness to dataset shift, we evaluate the predictive uncertainty on test examples from known and unknown distributions, and show that our method is able to express higher uncertainty on out-of-distribution examples. We demonstrate the scalability of our method by evaluating predictive uncertainty estimates on ImageNet.
translated by 谷歌翻译
不确定性的量化对于采用机器学习至关重要,尤其是拒绝分布(OOD)数据回到人类专家进行审查。然而,进步一直很慢,因为计算效率和不确定性估计质量之间必须达到平衡。因此,许多人使用神经网络或蒙特卡洛辍学的深层集合来进行相对最小的计算和记忆时合理的不确定性估计。出乎意料的是,当我们专注于$ \ leq 1 \%$ frese-falds正率(FPR)的现实世界中的约束时,先前的方法无法可靠地检测到OOD样本。值得注意的是,即使高斯随机噪声也无法触发这些流行的OOD技术。我们通过设计一种简单的对抗训练计划来帮助缓解这个问题,该计划结合了辍学合奏所预测的认知不确定性的攻击。我们证明了这种方法可以改善标准数据(即未经对抗制作)上的OOD检测性能,并将标准化的部分AUC从近乎随机的猜测性能提高到$ \ geq 0.75 $。
translated by 谷歌翻译
Deep Neural Networks (DNN) are increasingly used as components of larger software systems that need to process complex data, such as images, written texts, audio/video signals. DNN predictions cannot be assumed to be always correct for several reasons, among which the huge input space that is dealt with, the ambiguity of some inputs data, as well as the intrinsic properties of learning algorithms, which can provide only statistical warranties. Hence, developers have to cope with some residual error probability. An architectural pattern commonly adopted to manage failure-prone components is the supervisor, an additional component that can estimate the reliability of the predictions made by untrusted (e.g., DNN) components and can activate an automated healing procedure when these are likely to fail, ensuring that the Deep Learning based System (DLS) does not cause damages, despite its main functionality being suspended. In this paper, we consider DLS that implement a supervisor by means of uncertainty estimation. After overviewing the main approaches to uncertainty estimation and discussing their pros and cons, we motivate the need for a specific empirical assessment method that can deal with the experimental setting in which supervisors are used, where the accuracy of the DNN matters only as long as the supervisor lets the DLS continue to operate. Then we present a large empirical study conducted to compare the alternative approaches to uncertainty estimation. We distilled a set of guidelines for developers that are useful to incorporate a supervisor based on uncertainty monitoring into a DLS.
translated by 谷歌翻译
随着神经网络分类器部署在现实世界应用中,它们可以可靠地检测到它们的故障至关重要。一个实际解决方案是为每个预测分配置信度分数,然后使用这些分数来过滤可能的错误分类。然而,现有的置信度量尚未充分可靠地对此作用。本文介绍了一种新的框架,可以产生用于检测错误分类错误的定量度量。此框架红色在基本分类器的顶部构建错误检测器,并估计使用高斯过程的检测分数的不确定性。在125 UCI数据集上具有其他错误检测方法的实验比较证明了这种方法是有效的。在两个概率基础分类器上进一步实现以及视觉任务中的两个大型深度学习架构进一步证实了该方法是坚固且可扩展的。第三,用分布外和对抗样本的红色的实证分析表明,该方法不仅可以检测错误,还可以使用,而且可以了解它们来自哪里。因此,红色可以使用未来更广泛地提高神经网络分类器的可信度。
translated by 谷歌翻译
我们研究了回归中神经网络(NNS)的模型不确定性的方法。为了隔离模型不确定性的效果,我们专注于稀缺训练数据的无噪声环境。我们介绍了关于任何方法都应满足的模型不确定性的五个重要的逃亡者。但是,我们发现,建立的基准通常无法可靠地捕获其中一些逃避者,即使是贝叶斯理论要求的基准。为了解决这个问题,我们介绍了一种新方法来捕获NNS的模型不确定性,我们称之为基于神经优化的模型不确定性(NOMU)。 NOMU的主要思想是设计一个由两个连接的子NN组成的网络体系结构,一个用于模型预测,一个用于模型不确定性,并使用精心设计的损耗函数进行训练。重要的是,我们的设计执行NOMU满足我们的五个Desiderata。由于其模块化体系结构,NOMU可以为任何给定(先前训练)NN提供模型不确定性,如果访问其培训数据。我们在各种回归任务和无嘈杂的贝叶斯优化(BO)中评估NOMU,并具有昂贵的评估。在回归中,NOMU至少和最先进的方法。在BO中,Nomu甚至胜过所有考虑的基准。
translated by 谷歌翻译
人工神经网络无法评估其预测的不确定性是对它们广泛使用的障碍。我们区分了两种类型的可学习不确定性:由于缺乏训练数据和噪声引起的观察不确定性而导致的模型不确定性。贝叶斯神经网络使用坚实的数学基础来学习其预测的模型不确定性。观察不确定性可以通过在这些网络中添加一层并增强其损失功能来计算观察不确定性。我们的贡献是将这些不确定性概念应用于预测过程监控任务中,以训练基于不确定性的模型以预测剩余时间和结果。我们的实验表明,不确定性估计值允许分化更多和不准确的预测,并在回归和分类任务中构建置信区间。即使在运行过程的早期阶段,这些结论仍然是正确的。此外,部署的技术是快速的,并产生了更准确的预测。学习的不确定性可以增加用户对其流程预测系统的信心,促进人类与这些系统之间的更好合作,并通过较小的数据集实现早期的实施。
translated by 谷歌翻译
不确定性量化对于机器人感知至关重要,因为过度自信或点估计人员可以导致环境和机器人侵犯和损害。在本文中,我们评估了单视图监督深度学习中的不确定量化的可扩展方法,特别是MC辍学和深度集成。特别是对于MC辍学,我们探讨了阵列在架构中不同级别的效果。我们表明,在编码器的所有层中添加丢失会带来比文献中的其他变化更好的结果。此配置类似地执行与Deep Ensembles具有更低的内存占用,这是相关的简单。最后,我们探讨了伪RGBD ICP的深度不确定性,并展示其估计具有实际规模的准确的双视图相对运动的可能性。
translated by 谷歌翻译
人工智能的最新趋势是将验证的模型用于语言和视觉任务,这些模型已经实现了非凡的表现,但也令人困惑。因此,以各种方式探索这些模型的能力对该领域至关重要。在本文中,我们探讨了模型的可靠性,在其中我们将可靠的模型定义为一个不仅可以实现强大的预测性能,而且在许多涉及不确定性(例如选择性预测,开放式设置识别)的决策任务上,在许多决策任务上表现出色,而且表现良好。强大的概括(例如,准确性和适当的评分规则,例如在分布数据集中和分发数据集上的对数可能性)和适应性(例如,主动学习,几乎没有射击不确定性)。我们设计了40个数据集的10种任务类型,以评估视觉和语言域上可靠性的不同方面。为了提高可靠性,我们分别开发了VIT-PLEX和T5-PLEX,分别针对视觉和语言方式扩展了大型模型。 PLEX极大地改善了跨可靠性任务的最先进,并简化了传统协议,因为它可以改善开箱即用的性能,并且不需要设计分数或为每个任务调整模型。我们演示了高达1B参数的模型尺寸的缩放效果,并预处理数据集大小最多4B示例。我们还展示了PLEX在具有挑战性的任务上的功能,包括零射门的开放式识别,主动学习和对话语言理解中的不确定性。
translated by 谷歌翻译
We introduce ensembles of stochastic neural networks to approximate the Bayesian posterior, combining stochastic methods such as dropout with deep ensembles. The stochastic ensembles are formulated as families of distributions and trained to approximate the Bayesian posterior with variational inference. We implement stochastic ensembles based on Monte Carlo dropout, DropConnect and a novel non-parametric version of dropout and evaluate them on a toy problem and CIFAR image classification. For CIFAR, the stochastic ensembles are quantitatively compared to published Hamiltonian Monte Carlo results for a ResNet-20 architecture. We also test the quality of the posteriors directly against Hamiltonian Monte Carlo simulations in a simplified toy model. Our results show that in a number of settings, stochastic ensembles provide more accurate posterior estimates than regular deep ensembles.
translated by 谷歌翻译
标记数据可以是昂贵的任务,因为它通常由域专家手动执行。对于深度学习而言,这是繁琐的,因为它取决于大型标记的数据集。主动学习(AL)是一种范式,旨在通过仅使用二手车型认为最具信息丰富的数据来减少标签努力。在文本分类设置中,在AL上完成了很少的研究,旁边没有涉及最近的最先进的自然语言处理(NLP)模型。在这里,我们介绍了一个实证研究,可以将基于不确定性的基于不确定性的算法与Bert $ _ {base} $相比,作为使用的分类器。我们评估两个NLP分类数据集的算法:斯坦福情绪树木银行和kvk-Front页面。此外,我们探讨了旨在解决不确定性的al的预定问题的启发式;即,它是不可规范的,并且易于选择异常值。此外,我们探讨了查询池大小对al的性能的影响。虽然发现,AL的拟议启发式没有提高AL的表现;我们的结果表明,使用BERT $ _ {Base} $概率使用不确定性的AL。随着查询池大小变大,性能的这种差异可以减少。
translated by 谷歌翻译
根据研究人员在歧视和校准性能方面采用的标准评估实践,这项工作旨在了解阶级不平衡对胸部X射线分类器的性能的影响。首先,我们进行了一项文献研究,分析了普通科学实践并确认:(1)即使在处理高度不平衡的数据集时,社区也倾向于使用由大多数阶级主导的指标; (2)包括包括胸部X射线分类器的校准研究仍然罕见,尽管其在医疗保健的背景下的重要性。其次,我们对两个主要胸部X射线数据集进行了系统实验,探讨了不同类别比率下的几种性能指标的行为,并显示了广泛采用的指标可以隐藏少数阶级中的性能。最后,我们提出了通过两个替代度量,精密召回曲线和平衡的Brier得分,这更好地反映了系统在这种情况下的性能。我们的研究结果表明,胸部X射线分类器研究界采用的当前评估实践可能无法反映真实临床情景中计算机辅助诊断系统的性能,并建议改善这种情况的替代方案。
translated by 谷歌翻译
Estimating how uncertain an AI system is in its predictions is important to improve the safety of such systems. Uncertainty in predictive can result from uncertainty in model parameters, irreducible data uncertainty and uncertainty due to distributional mismatch between the test and training data distributions. Different actions might be taken depending on the source of the uncertainty so it is important to be able to distinguish between them. Recently, baseline tasks and metrics have been defined and several practical methods to estimate uncertainty developed. These methods, however, attempt to model uncertainty due to distributional mismatch either implicitly through model uncertainty or as data uncertainty. This work proposes a new framework for modeling predictive uncertainty called Prior Networks (PNs) which explicitly models distributional uncertainty. PNs do this by parameterizing a prior distribution over predictive distributions. This work focuses on uncertainty for classification and evaluates PNs on the tasks of identifying out-of-distribution (OOD) samples and detecting misclassification on the MNIST and CIFAR-10 datasets, where they are found to outperform previous methods. Experiments on synthetic and MNIST data show that unlike previous non-Bayesian methods PNs are able to distinguish between data and distributional uncertainty.
translated by 谷歌翻译
我们提出了一种新的方法来捕获神经网络中决策边界附近的数据点,这些点通常被称为特定类型的不确定性。在我们的方法中,我们试图根据对抗攻击方法的思想来执行不确定性估计。在本文中,不确定估计来自输入扰动,与之前的研究不同,这些研究可以在贝叶斯方法中提供对模型参数的扰动。我们能够在投入中产生与扰动的关系的不确定性。有趣的是,我们将建议的方法应用于来自区块链的数据集。我们将模型不确定性的性能与最近的不确定性方法进行比较。我们表明,该方法揭示了对其他方法的显着优势,并且在机器学习中捕获模型不确定性的风险较小。
translated by 谷歌翻译
在这项工作中,我们使用变分推论来量化无线电星系分类的深度学习模型预测的不确定性程度。我们表明,当标记无线电星系时,个体测试样本的模型后差水平与人类不确定性相关。我们探讨了各种不同重量前沿的模型性能和不确定性校准,并表明稀疏事先产生更良好的校准不确定性估计。使用单个重量的后部分布,我们表明我们可以通过从最低信噪比(SNR)中除去权重来修剪30%的完全连接的层权重,而无需显着损失性能。我们证明,可以使用基于Fisher信息的排名来实现更大程度的修剪,但我们注意到两种修剪方法都会影响Failaroff-Riley I型和II型无线电星系的不确定性校准。最后,我们表明,与此领域的其他工作相比,我们经历了冷的后效,因此后部必须缩小后加权以实现良好的预测性能。我们检查是否调整成本函数以适应模型拼盘可以弥补此效果,但发现它不会产生显着差异。我们还研究了原则数据增强的效果,并发现这改善了基线,而且还没有弥补观察到的效果。我们将其解释为寒冷的后效,因为我们的培训样本过于有效的策划导致可能性拼盘,并将其提高到未来无线电银行分类的潜在问题。
translated by 谷歌翻译