因果匪是经典匪徒问题的变体,在该问题中,代理必须在顺序决策过程中识别最佳动作,其中动作的奖励分布显示由因果模型控制的非平凡依赖性结构。到目前为止,文献中针对此问题提出的方法取决于完整因果图的精确知识。我们制定了不再依赖先前因果知识的新因果匪徒。相反,他们利用基于分离集的估计量,我们可以使用简单的条件独立性测试或因果发现方法找到。我们证明,给定一个真正的分离集,用于离散的I.I.D.数据,该估计量是公正的,并且具有差异,该方差受样本平均值的上限。我们分别基于Thompson采样和UCB开发算法,分别用于离散和高斯模型,并显示了模拟数据以及来自现实世界中蛋白质信号数据的强盗图上的性能提高。
translated by 谷歌翻译
本文研究了在因果图形模型中设计最佳干预措施序列的问题,以最大程度地减少对事后最佳干预的累积后悔。自然,这是一个因果匪徒问题。重点是线性结构方程模型(SEM)和软干预措施的因果匪徒。假定该图的结构是已知的,并且具有$ n $节点。每个节点都假定使用两种线性机制,一种软干预和一种观察性,产生了$ 2^n $可能的干预措施。现有的因果匪徒算法假设,至少完全指定了奖励节点父母的介入分布。但是,有$ 2^n $这样的分布(一个与每个干预措施相对应),即使在中等尺寸的图中也变得越来越高。本文分配了知道这些分布的假设。提出了两种算法,用于常见者(基于UCB)和贝叶斯(基于汤普森采样)的设置。这些算法的关键思想是避免直接估计$ 2^n $奖励分布,而是估算完全指定SEMS($ n $线性)的参数,并使用它们来计算奖励。在这两种算法中,在噪声和参数空间的有界假设下,累积遗憾的是$ \ tilde {\ cal o}(((2d)^l l \ sqrt {t})$,其中$ d $是图的最高度和$ l $是其最长因果路径的长度。
translated by 谷歌翻译
In this review, we discuss approaches for learning causal structure from data, also called causal discovery. In particular, we focus on approaches for learning directed acyclic graphs (DAGs) and various generalizations which allow for some variables to be unobserved in the available data. We devote special attention to two fundamental combinatorial aspects of causal structure learning. First, we discuss the structure of the search space over causal graphs. Second, we discuss the structure of equivalence classes over causal graphs, i.e., sets of graphs which represent what can be learned from observational data alone, and how these equivalence classes can be refined by adding interventional data.
translated by 谷歌翻译
在组合因果土匪(CCB)中,学习代理在每轮中最多选择$ k $变量进行干预,从观察到的变量中收集反馈,目的是最大程度地减少对目标变量$ y $的预期遗憾。与所有有关因果匪徒的研究不同,CCB需要处理指数较大的动作空间。我们在因果模型的简洁参数表示的二元广义线性模型(BGLM)的背景下进行研究。我们根据最大似然估计方法提出了Markovian BGLMS(即没有隐藏变量)的算法BGLM-OFU,并证明它可以实现$ O(\ sqrt {t} \ log t)$遗憾,其中$ t $是$ t $时间范围。对于具有隐藏变量的线性模型的特殊情况,我们应用因果推理技术,例如DO-Calculus将原始模型转换为马尔可夫模型,然后证明我们的BGLM OFFU U算法和另一种基于线性回归的算法都用隐藏变量求解此类线性模型。我们的新颖性包括(a)考虑组合干预行动空间,(b)考虑一般因果模型,包括具有隐藏变量的因果模型,(c)整合和适应来自多种研究的技术,例如广义线性匪徒和在线影响最大化,以及(d)不依赖不现实的假设,例如在某些先前研究中使用的所有干预措施中了解父母的共同分配。
translated by 谷歌翻译
在因果强盗问题中,动作集包括关于因果图的变量的干预。最近几位研究人员研究了这种强盗问题并指出了他们的实际应用。然而,所有现有的作品都依赖于限制性和不切实际的假设,即学习者将全面了解因果图结构前期。在本文中,我们在不知道因果图的情况下开发新的因果强盗算法。我们的算法适用于因果树,因果林和一般的因果图。我们的算法的遗憾保证大大提高了温和条件下标准多臂强盗(MAB)算法的遗传。最后,我们证明了我们的温和条件是必要的:如果没有它们,不能比标准MAB算法更好。
translated by 谷歌翻译
跨学科的一个重要问题是发现产生预期结果的干预措施。当可能的干预空间很大时,需要进行详尽的搜索,需要实验设计策略。在这种情况下,编码变量之间的因果关系以及因此对系统的影响,对于有效地确定理想的干预措施至关重要。我们开发了一种迭代因果方法来识别最佳干预措施,这是通过分布后平均值和所需目标平均值之间的差异来衡量的。我们制定了一种主动学习策略,该策略使用从不同干预措施中获得的样本来更新有关基本因果模型的信念,并确定对最佳干预措施最有用的样本,因此应在下一批中获得。该方法采用了因果模型的贝叶斯更新,并使用精心设计的,有因果关系的收购功能优先考虑干预措施。此采集函数以封闭形式进行评估,从而有效优化。理论上以信息理论界限和可证明的一致性结果在理论上基于理论上的算法。我们说明了综合数据和现实世界生物学数据的方法,即来自worturb-cite-seq实验的基因表达数据,以识别诱导特定细胞态过渡的最佳扰动;与几个基线相比,观察到所提出的因果方法可实现更好的样品效率。在这两种情况下,我们都认为因果知情的采集函数尤其优于现有标准,从而允许使用实验明显更少的最佳干预设计。
translated by 谷歌翻译
本文研究了多武装强盗(MAB)问题的实例,具体而言,若干因果MAB在相同的动态系统中长期操作。实际上每个强盗的奖励分布由相同的非平凡依赖结构管辖,这是一种动态因果模型。动态,因为我们允许每个因果MAB依赖于前面的MAB,并且这样做能够在代理之间传输信息。我们的贡献是时间的日间因果强盗(CCB),在离散决策设置中是有用的,其中因果效应在时间变化,并且可以通过同一系统的早期干预通知。在本文中,我们在玩具问题上表现出一些早期的CCB发现。
translated by 谷歌翻译
We explore how observational and interventional causal discovery methods can be combined. A state-of-the-art observational causal discovery algorithm for time series capable of handling latent confounders and contemporaneous effects, called LPCMCI, is extended to profit from casual constraints found through randomized control trials. Numerical results show that, given perfect interventional constraints, the reconstructed structural causal models (SCMs) of the extended LPCMCI allow 84.6% of the time for the optimal prediction of the target variable. The implementation of interventional and observational causal discovery is modular, allowing causal constraints from other sources. The second part of this thesis investigates the question of regret minimizing control by simultaneously learning a causal model and planning actions through the causal model. The idea is that an agent to optimize a measured variable first learns the system's mechanics through observational causal discovery. The agent then intervenes on the most promising variable with randomized values allowing for the exploitation and generation of new interventional data. The agent then uses the interventional data to enhance the causal model further, allowing improved actions the next time. The extended LPCMCI can be favorable compared to the original LPCMCI algorithm. The numerical results show that detecting and using interventional constraints leads to reconstructed SCMs that allow 60.9% of the time for the optimal prediction of the target variable in contrast to the baseline of 53.6% when using the original LPCMCI algorithm. Furthermore, the induced average regret decreases from 1.2 when using the original LPCMCI algorithm to 1.0 when using the extended LPCMCI algorithm with interventional discovery.
translated by 谷歌翻译
上下文的强盗和强化学习算法已成功用于各种交互式学习系统,例如在线广告,推荐系统和动态定价。但是,在高风险应用领域(例如医疗保健)中,它们尚未被广泛采用。原因之一可能是现有方法假定基本机制是静态的,因为它们不会在不同的环境上改变。但是,在许多现实世界中,这些机制可能会跨环境变化,这可能使静态环境假设无效。在本文中,考虑到离线上下文匪徒的框架,我们迈出了解决环境转变问题的一步。我们认为环境转移问题通过因果关系的角度,并提出了多种环境的背景匪徒,从而可以改变基本机制。我们采用因果关系文献的不变性概念,并介绍了政策不变性的概念。我们认为,仅当存在未观察到的变量时,政策不变性才有意义,并表明在这种情况下,保证在适当假设下跨环境概括最佳不变政策。我们的结果建立了因果关系,不变性和上下文土匪之间的具体联系。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
因果匪徒问题将因果推断与多军匪徒集成在一起。因果匪徒的纯粹探索是以下在线学习任务:给定一个因果关系分布未知的因果图,在每一轮中,我们可以选择干预一个变量或不进行干预,并观察所有随机变量的随机结果,并与所有随机变量进行观察使用尽可能少的回合的目标,我们可以输出一种干预措施,该干预措施在奖励变量$ y $上具有至少$ 1- \ delta $,其中$ \ delta $是一个最佳(或几乎是最好的)预期结果给定信心水平。我们在三种类型的因果模型,包括平行图,具有少量后门父母的常规图和二进制通用线性模型的三种类型的因果模型上提供了第一个完全依赖GAP的完全自适应纯探索算法。我们的算法改善了先前的因果匪徒算法,这些算法并非自适应奖励差距,也没有先前的自适应纯探索算法,它们不利用因果匪徒的特殊特征。
translated by 谷歌翻译
We consider the problem of recovering the causal structure underlying observations from different experimental conditions when the targets of the interventions in each experiment are unknown. We assume a linear structural causal model with additive Gaussian noise and consider interventions that perturb their targets while maintaining the causal relationships in the system. Different models may entail the same distributions, offering competing causal explanations for the given observations. We fully characterize this equivalence class and offer identifiability results, which we use to derive a greedy algorithm called GnIES to recover the equivalence class of the data-generating model without knowledge of the intervention targets. In addition, we develop a novel procedure to generate semi-synthetic data sets with known causal ground truth but distributions closely resembling those of a real data set of choice. We leverage this procedure and evaluate the performance of GnIES on synthetic, real, and semi-synthetic data sets. Despite the strong Gaussian distributional assumption, GnIES is robust to an array of model violations and competitive in recovering the causal structure in small- to large-sample settings. We provide, in the Python packages "gnies" and "sempler", implementations of GnIES and our semi-synthetic data generation procedure.
translated by 谷歌翻译
因果结构学习是许多领域的关键问题。通过对感兴趣系统进行实验来学习因果结构。我们解决了设计一批实验的主要原因,每个实验中同时干预多个变量。虽然可能比常用的单变干预措施更具信息丰富,但选择这种干预措施是更具挑战性的,这是由于复合干预措施的双指数组合搜索空间。在本文中,我们开发有效的算法,以优化量化预算限制批次实验的信息性的不同目标函数。通过建立这些目标的新型子模具性质,我们为我们的算法提供近似保证。我们的算法经验上优于随机干预和算法,只能选择单变化干预。
translated by 谷歌翻译
在许多学科中,在大量解释变量中推断反应变量的直接因果父母的问题具有很高的实际意义。但是,建立的方法通常至少会随着解释变量的数量而呈指数级扩展,难以扩展到非线性关系,并且很难扩展到周期性数据。受{\ em Debiased}机器学习方法的启发,我们研究了一种单Vs.-the-Rest特征选择方法,以发现响应的直接因果父母。我们提出了一种用于纯观测数据的算法,同时还提供理论保证,包括可能在周期存在下的部分非线性关系的情况。由于它仅需要对每个变量进行一个估计,因此我们的方法甚至适用于大图。与既定方法相比,我们证明了显着改善。
translated by 谷歌翻译
最近,已经提出了利用预测模型在不断变化的环境方面的不变性来推断响应变量的因果父母的子集的不变性。如果环境仅影响少数基本机制,则例如不变因果预测(ICP)确定的子集可能很小,甚至是空的。我们介绍了最小不变性的概念,并提出了不变的血统搜索(IAS)。在其人群版本中,IAS输出了一个仅包含响应祖先的集合,并且是ICP输出的超集。当应用于数据时,如果不变性的基础测试具有渐近水平和功率,则相应的保证会渐近。我们开发可扩展算法并在模拟和真实数据上执行实验。
translated by 谷歌翻译
因果图发现和因果效应估计是因果推断的两个基本任务。尽管已经为每个任务开发了许多方法,但共同应用这些方法时会出现统计挑战:在同一数据上运行因果发现算法后,估算因果关系效应,导致“双重浸入”,使经典置信区间的覆盖范围无效。为此,我们开发了有效的可获得后发现推断的工具。一个关键的贡献是贪婪等效搜索(GES)算法的随机版本,该算法允许对经典置信区间进行有效的有限样本校正。在经验研究中,我们表明,因果发现和随后的推断算法的幼稚组合通常会导致高度膨胀的误导率。同时,我们的嘈杂的GES方法提供了可靠的覆盖范围控制,同时获得比数据拆分更准确的因果图恢复。
translated by 谷歌翻译
因果推断的一个共同主题是学习观察到的变量(也称为因果发现)之间的因果关系。考虑到大量候选因果图和搜索空间的组合性质,这通常是一项艰巨的任务。也许出于这个原因,到目前为止,大多数研究都集中在相对较小的因果图上,并具有多达数百个节点。但是,诸如生物学之类的领域的最新进展使生成实验数据集,并进行了数千种干预措施,然后进行了数千个变量的丰富分析,从而增加了机会和迫切需要大量因果图模型。在这里,我们介绍了因子定向无环图(F-DAG)的概念,是将搜索空间限制为非线性低级别因果相互作用模型的一种方法。将这种新颖的结构假设与最近的进步相结合,弥合因果发现与连续优化之间的差距,我们在数千个变量上实现了因果发现。此外,作为统计噪声对此估计程序的影响的模型,我们根据随机图研究了F-DAG骨架的边缘扰动模型,并量化了此类扰动对F-DAG等级的影响。该理论分析表明,一组候选F-DAG比整个DAG空间小得多,因此在很难评估基础骨架的高维度中更统计学上的稳定性。我们提出了因子图(DCD-FG)的可区分因果发现,这是对高维介入数据的F-DAG约束因果发现的可扩展实现。 DCD-FG使用高斯非线性低级结构方程模型,并且在模拟中的最新方法以及最新的大型单细胞RNA测序数据集中,与最新方法相比显示出显着改善遗传干预措施。
translated by 谷歌翻译
由于数据有限和非识别性,观察性和介入数据的因果发现是具有挑战性的:在估计基本结构因果模型(SCM)时引入不确定性的因素。基于这两个因素引起的不确定性选择实验(干预措施)可以加快SCM的识别。来自有限数据的因果发现实验设计中的现有方法要么依赖于SCM的线性假设,要么仅选择干预目标。这项工作将贝叶斯因果发现的最新进展纳入了贝叶斯最佳实验设计框架中,从而使大型非线性SCM的积极因果发现同时选择了介入目标和值。我们证明了对线性和非线性SCM的合成图(ERDOS-R \'enyi,breetr cable)以及在\ emph {intiLico}单细胞基因调节网络数据集的\ emph {inyeare scms的性能。
translated by 谷歌翻译
我们研究了给定因果模型的公平约束的最佳臂识别问题。目标是在给定节点上找到软干预,以通过仅通过因果模型的部分知识来满足公平约束的同时最大化结果。问题是通过确保在线市场的公平性的动机。我们提供了对误差概率的理论保证,并经验与两级基线进行算法的效果。
translated by 谷歌翻译
研究了与隐藏变量有关的非循环图(DAG)相关的因果模型中因果效应的识别理论。然而,由于估计它们输出的识别功能的复杂性,因此未耗尽相应的算法。在这项工作中,我们弥合了识别和估算涉及单一治疗和单一结果的人口水平因果效应之间的差距。我们派生了基于功能的估计,在大类隐藏变量DAG中表现出对所识别的效果的双重稳健性,其中治疗满足简单的图形标准;该类包括模型,产生调整和前门功能作为特殊情况。我们还提供必要的和充分条件,其中隐藏变量DAG的统计模型是非分子饱和的,并且意味着对观察到的数据分布没有平等约束。此外,我们推导了一类重要的隐藏变量DAG,这意味着观察到观察到的数据分布等同于完全观察到的DAG等同于(最高的相等约束)。在这些DAG类中,我们推出了实现兴趣目标的半导体效率界限的估计估计值,该估计是治疗满足我们的图形标准的感兴趣的目标。最后,我们提供了一种完整的识别算法,可直接产生基于权重的估计策略,以了解隐藏可变因果模型中的任何可识别效果。
translated by 谷歌翻译