转移学习是2D计算机愿景中的一种经过验证的技术,可以利用可用的大量数据并获得高性能,而数据集则由于获取或注释的成本而受到限制。在3D中,注释是一项昂贵的任务。然而,直到最近才研究转移学习方法。由于没有非常大的注释数据集,因此无监督的预培训受到了极大的青睐。在这项工作中,我们解决了稀疏室外激光扫描的实时3D语义细分的案例。这样的数据集已经上升,但是对于同一任务,也有不同的标签集。在这项工作中,我们在这里提出了一个名为“粗标签”的中级标签集,该标签允许在没有任何手动标签的情况下利用所有可用数据。这样,我们可以访问较大的数据集,以及更简单的语义分割任务。有了它,我们引入了一项新的预训练任务:粗制标签预训练,也称为可乐。我们彻底分析了可乐对各种数据集和体系结构的影响,并表明它可以提高性能,尤其是当填充任务仅访问小型数据集时。
translated by 谷歌翻译
3D autonomous driving semantic segmentation using deep learning has become, a well-studied subject, providing methods that can reach very high performance. Nonetheless, because of the limited size of the training datasets, these models cannot see every type of object and scenes found in real-world applications. The ability to be reliable in these various unknown environments is called domain generalization. Despite its importance, domain generalization is relatively unexplored in the case of 3D autonomous driving semantic segmentation. To fill this gap, this paper presents the first benchmark for this application by testing state-of-the-art methods and discussing the difficulty of tackling LiDAR domain shifts. We also propose the first method designed to address this domain generalization, which we call 3DLabelProp. This method relies on leveraging the geometry and sequentiality of the LiDAR data to enhance its generalization performances by working on partially accumulated point clouds. It reaches a mIoU of 52.6% on SemanticPOSS while being trained only on SemanticKITTI, making it state-of-the-art method for generalization (+7.4% better than the second best method). The code for this method will be available on Github.
translated by 谷歌翻译
We propose a new self-supervised method for pre-training the backbone of deep perception models operating on point clouds. The core idea is to train the model on a pretext task which is the reconstruction of the surface on which the 3D points are sampled, and to use the underlying latent vectors as input to the perception head. The intuition is that if the network is able to reconstruct the scene surface, given only sparse input points, then it probably also captures some fragments of semantic information, that can be used to boost an actual perception task. This principle has a very simple formulation, which makes it both easy to implement and widely applicable to a large range of 3D sensors and deep networks performing semantic segmentation or object detection. In fact, it supports a single-stream pipeline, as opposed to most contrastive learning approaches, allowing training on limited resources. We conducted extensive experiments on various autonomous driving datasets, involving very different kinds of lidars, for both semantic segmentation and object detection. The results show the effectiveness of our method to learn useful representations without any annotation, compared to existing approaches. Code is available at \href{https://github.com/valeoai/ALSO}{github.com/valeoai/ALSO}
translated by 谷歌翻译
Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (e.g., ImageNet) can help boost performance once fine-tuned on a usually much smaller target set, has been instrumental to many applications in language and vision. Yet, very little is known about its usefulness in 3D point cloud understanding. We see this as an opportunity considering the effort required for annotating data in 3D. In this work, we aim at facilitating research on 3D representation learning. Different from previous works, we focus on high-level scene understanding tasks. To this end, we select a suite of diverse datasets and tasks to measure the effect of unsupervised pre-training on a large source set of 3D scenes. Our findings are extremely encouraging: using a unified triplet of architecture, source dataset, and contrastive loss for pre-training, we achieve improvement over recent best results in segmentation and detection across 6 different benchmarks for indoor and outdoor, real and synthetic datasets -demonstrating that the learned representation can generalize across domains. Furthermore, the improvement was similar to supervised pre-training, suggesting that future efforts should favor scaling data collection over more detailed annotation. We hope these findings will encourage more research on unsupervised pretext task design for 3D deep learning. Our code is publicly available at https://github.com/facebookresearch/PointContrast
translated by 谷歌翻译
Paris-Carla-3d是由移动激光器和相机系统构建的几个浓彩色点云的数据集。数据由两组具有来自开源Carla模拟器(700百万分)的合成数据和在巴黎市中获取的真实数据(6000万分),因此Paris-Carla-3d的名称。此数据集的一个优点是在开源Carla模拟器中模拟了相同的LIDAR和相机平台,因为用于生产真实数据的开源Carla Simulator。此外,使用Carla的语义标记的手动注释在真实数据上执行,允许将转移方法从合成到实际数据进行测试。该数据集的目的是提供一个具有挑战性的数据集,以评估和改进户外环境3D映射的困难视觉任务的方法:语义分段,实例分段和场景完成。对于每项任务,我们描述了评估协议以及建立基线的实验。
translated by 谷歌翻译
Our dataset provides dense annotations for each scan of all sequences from the KITTI Odometry Benchmark [19]. Here, we show multiple scans aggregated using pose information estimated by a SLAM approach.
translated by 谷歌翻译
LIDAR点云通常通过连续旋转LIDAR传感器扫描,捕获周围环境的精确几何形状,并且对于许多自主检测和导航任务至关重要。尽管已经开发了许多3D深度体系结构,但是在分析和理解点云数据中,有效收集和大量点云的注释仍然是一个主要挑战。本文介绍了Polarmix,这是一种简单且通用的点云增强技术,但可以在不同的感知任务和场景中有效地减轻数据约束。 Polarmix通过两种跨扫描扩展策略来富含点云分布,并保留点云保真度,这些杂志沿扫描方向切割,编辑和混合点云。第一个是场景级交换,它交换了两个LiDAR扫描的点云扇区,这些扫描沿方位角轴切割。第二个是实例级旋转和粘贴,它是从一个激光雷达扫描中进行的点点实例,用多个角度旋转它们(以创建多个副本),然后将旋转点实例粘贴到其他扫描中。广泛的实验表明,Polarmix在不同的感知任务和场景中始终如一地达到卓越的性能。此外,它可以用作各种3D深度体系结构的插件,并且对于无监督的域适应性也很好。
translated by 谷歌翻译
随着商业深度传感器和3D扫描仪的最近可用性和可承受能力,越来越多的3D(即RGBD,点云)数据集已被宣传以促进3D计算机视觉的研究。但是,现有的数据集覆盖相对较小的区域或具有有限的语义注释。对城市规模3D场景的细粒度理解仍处于起步阶段。在本文中,我们介绍了Sensaturban,一个城市规模的UAV摄影测量点云数据集,包括从三个英国城市收集的近30亿积分,占地7.6公里^ 2。 DataSet中的每个点已标记为具有细粒度的语义注释,导致数据集是上一个现有最大摄影测量点云数据集的三倍的三倍。除了诸如道路和植被等诸如道路和植被的常见类别之外,我们的数据集还包含包括轨道,桥梁和河流的城市水平类别。基于此数据集,我们进一步构建了基准,以评估最先进的分段算法的性能。特别是,我们提供了全面的分析,确定了限制城市规模点云理解的几个关键挑战。数据集可在http://point-cloud-analysis.cs.ox.ac.uk中获取。
translated by 谷歌翻译
现有的无监督点云预训练的方法被限制在场景级或点/体素级实例歧视上。场景级别的方法往往会失去对识别道路对象至关重要的本地细节,而点/体素级方法固有地遭受了有限的接收领域,而这种接收领域无力感知大型对象或上下文环境。考虑到区域级表示更适合3D对象检测,我们设计了一个新的无监督点云预训练框架,称为proposalcontrast,该框架通过对比的区域建议来学习强大的3D表示。具体而言,通过从每个点云中采样一组详尽的区域建议,每个提案中的几何点关系都是建模用于创建表达性建议表示形式的。为了更好地适应3D检测属性,提案contrast可以通过群体间和统一分离来优化,即提高跨语义类别和对象实例的提议表示的歧视性。在各种3D检测器(即PV-RCNN,Centerpoint,Pointpillars和Pointrcnn)和数据集(即Kitti,Waymo和一次)上验证了提案cont抗对流的概括性和可传递性。
translated by 谷歌翻译
我们提出了一种新的方法来将4D动态对象前瞻灌输到学习的3D表示,通过无监督的预训练。我们观察到对象通过环境的动态移动提供了关于其对象的重要提示,因此提出了利用这种动态理解的学习学习的3D表示,然后可以有效地传送到下游3D语义场景中的改进性能。我们提出了一种新的数据增强方案,利用静态3D环境中移动的合成3D形状,并在3D-4D约束下采用对比学习,该约束将4D Imormces编码到学习的3D表示中。实验表明,我们无监督的代表学习导致下游3D语义分割,对象检测和实例分割任务的改进,而且,显着提高了数据稀缺方案的性能。
translated by 谷歌翻译
3D感知最近的进展在了解3DACHAPES甚至场景的几何结构方面表现出令人印象深刻的进展。灵感来自这些进步的几何理解,我们旨在利用几何约束下学到的表示基于图像的感知。我们介绍一种基于多视图RGB-D数据学习View-Invariant的方法,用于网络预训练的网络预训练的几何感知表示,然后可以将其有效地传送到下游2D任务。我们建议在多视图IM-ysge约束和图像 - 几何约束下采用对比学习,以便在学习的2D表示中进行编码。这不仅仅是在几乎非仅对图像的语义分割,实例分段和对象检测的基于图像的基于图像的基于图像的TASK上学习而改进,而且,但是,在低数据方案中提供了显着的改进。我们对全数据的语义细分显示6.0%的显着提高,以及剪刀上的基线20%数据上的11.9%。
translated by 谷歌翻译
深度神经网络的3D语义分割的最新进展已取得了显着的成功,并且可用数据集的性能快速提高。但是,当前的3D语义分割基准仅包含少数类别 - 例如,扫描仪和semantickitti少于30个类别,这些类别不足以反映真实环境的多样性(例如,语义图像涵盖数百到数千个类别的类别)。因此,我们建议研究3D语义分割的较大词汇,并在扫描仪数据上具有新的扩展基准测试,其中有200个类别类别,比以前研究的数量级要多。大量的类别类别也引起了巨大的自然级别不平衡,这两者对于现有的3D语义分割方法都具有挑战性。为了在这种情况下了解更多强大的3D功能,我们提出了一种以语言为导向的预训练方法来鼓励学习的3D功能,该方法可能有限的培训示例以靠近其预训练的文本嵌入。广泛的实验表明,我们的方法始终优于我们所提出的基准测试( +9%相对MIOU)的3D语义分割的最先进的3D预训练,包括仅使用5%的 +25%相对MIOU的有限数据方案注释。
translated by 谷歌翻译
当标签稀缺时,域的适应性是使学习能够学习的重要任务。尽管大多数作品仅着眼于图像模式,但有许多重要的多模式数据集。为了利用多模式的域适应性,我们提出了跨模式学习,在这种学习中,我们通过相互模仿在两种模式的预测之间执行一致性。我们限制了我们的网络,以对未标记的目标域数据进行正确预测,并在标记的数据和跨模式的一致预测中进行预测。在无监督和半监督的域适应设置中进行的实验证明了这种新型域适应策略的有效性。具体而言,我们评估了从2D图像,3D点云或两者都从3D语义分割的任务进行评估。我们利用最近的驾驶数据集生产各种域名适应场景,包括场景布局,照明,传感器设置和天气以及合成到现实的设置的变化。我们的方法在所有适应方案上都显着改善了以前的单模式适应基线。我们的代码可在https://github.com/valeoai/xmuda_journal上公开获取
translated by 谷歌翻译
准确的移动对象细分是自动驾驶的重要任务。它可以为许多下游任务提供有效的信息,例如避免碰撞,路径计划和静态地图构建。如何有效利用时空信息是3D激光雷达移动对象分割(LIDAR-MOS)的关键问题。在这项工作中,我们提出了一个新型的深神经网络,利用了时空信息和不同的LiDAR扫描表示方式,以提高LIDAR-MOS性能。具体而言,我们首先使用基于图像图像的双分支结构来分别处理可以从顺序的LiDAR扫描获得的空间和时间信息,然后使用运动引导的注意模块组合它们。我们还通过3D稀疏卷积使用点完善模块来融合LIDAR范围图像和点云表示的信息,并减少对象边界上的伪像。我们验证了我们提出的方法对Semantickitti的LiDAR-MOS基准的有效性。我们的方法在LiDar-Mos IOU方面大大优于最先进的方法。从设计的粗到精细体系结构中受益,我们的方法以传感器框架速率在线运行。我们方法的实现可作为开源可用:https://github.com/haomo-ai/motionseg3d。
translated by 谷歌翻译
Segmentation of lidar data is a task that provides rich, point-wise information about the environment of robots or autonomous vehicles. Currently best performing neural networks for lidar segmentation are fine-tuned to specific datasets. Switching the lidar sensor without retraining on a big set of annotated data from the new sensor creates a domain shift, which causes the network performance to drop drastically. In this work we propose a new method for lidar domain adaption, in which we use annotated panoptic lidar datasets and recreate the recorded scenes in the structure of a different lidar sensor. We narrow the domain gap to the target data by recreating panoptic data from one domain in another and mixing the generated data with parts of (pseudo) labeled target domain data. Our method improves the nuScenes to SemanticKITTI unsupervised domain adaptation performance by 15.2 mean Intersection over Union points (mIoU) and by 48.3 mIoU in our semi-supervised approach. We demonstrate a similar improvement for the SemanticKITTI to nuScenes domain adaptation by 21.8 mIoU and 51.5 mIoU, respectively. We compare our method with two state of the art approaches for semantic lidar segmentation domain adaptation with a significant improvement for unsupervised and semi-supervised domain adaptation. Furthermore we successfully apply our proposed method to two entirely unlabeled datasets of two state of the art lidar sensors Velodyne Alpha Prime and InnovizTwo, and train well performing semantic segmentation networks for both.
translated by 谷歌翻译
我们呈现Mix3D,一种用于分割大规模3D场景的数据增强技术。由于场景上下文有助于推理对象语义,因此当前的工作侧重于具有大容量和接收字段的模型,可以完全捕获输入3D场景的全局上下文。然而,强烈的背景前瞻可能会有不利的影响,就像错过了一个穿过街道的行人。在这项工作中,我们专注于平衡全球场景和局部几何形状的重要性,以概括在培训集中的上下文前方之外的目标。特别是,我们提出了一种“混合”技术,通过组合两个增强的场景来创造新的训练样本。通过这样做,对象实例被隐式地放入新颖的外观环境中,因此模型更难地依赖场景上下文,而是从本地结构推断出语义。我们进行详细的分析以了解全球背景,局部结构,局部结构和混合场景效果的重要性。在实验中,我们展示了Mix3D培训的模型从室内(Scannet,S3DIS)和室外数据集(Semantickitti)上的显着性能提升。 Mix3D可以逐渐与任何现有方法一起使用,例如,用Mix3D培训,MinkowsWinet在SCANNet测试基准78.1 Miou的显着边际占据了所有现有最先进的方法。代码可用:https://nekrasov.dev/mix3d/
translated by 谷歌翻译
室内场景云的无监督对比学习取得了巨大的成功。但是,室外场景中无监督的学习点云仍然充满挑战,因为以前的方法需要重建整个场景并捕获对比度目标的部分视图。这在带有移动物体,障碍物和传感器的室外场景中是不可行的。在本文中,我们提出了CO^3,即合作对比度学习和上下文形状的预测,以无监督的方式学习3D表示室外景点云。与现有方法相比,Co^3具有几种优点。 (1)它利用了从车辆侧和基础架构侧来的激光点云来构建差异,但同时维护对比度学习的通用语义信息,这比以前的方法构建的视图更合适。 (2)在对比度目标的同时,提出了形状上下文预测作为预训练目标,并为无监督的3D点云表示学习带来了更多与任务相关的信息,这在将学习的表示形式转移到下游检测任务时是有益的。 (3)与以前的方法相比,CO^3学到的表示形式可以通过不同类型的LIDAR传感器收集到不同的室外场景数据集。 (4)CO^3将一次和Kitti数据集的当前最新方法提高到2.58地图。代码和模型将发布。我们认为Co^3将有助于了解室外场景中的LiDar Point云。
translated by 谷歌翻译
Panoptic现场了解和跟踪动态代理对于机器人和自动化车辆至关重要,以在城市环境中导航。由于LiDAR提供了方案的精确照明和几何描绘,使用LIDAR点云执行这些任务提供可靠的预测。然而,现有数据集缺乏城市场景类型的多样性,并且具有有限数量的动态对象实例,其阻碍了这些任务的学习以及开发方法的可信基准。在本文中,我们介绍了大规模的Panoptic Nuscenes基准数据集,它扩展了我们流行的NUSCENES DataSet,具有用于语义分割,Panoptic分段和Panoptic跟踪任务的Pock-Wise Trountruth annotations。为了便于比较,我们为我们提出的数据集提供了几个任务的强大基线。此外,我们分析了Panoptic跟踪的现有度量标准的缺点,并提出了一种解决问题的小说实例的Pat度量。我们提供详尽的实验,展示了Panoptic Nuscenes与现有数据集相比的效用,并在Nuscenes.org提供的在线评估服务器。我们认为,此扩展将加快新颖的现场了解动态城市环境的新方法研究。
translated by 谷歌翻译
交通场景边缘壳体的语义分割的鲁棒性是智能运输安全的重要因素。然而,交通事故的大多数关键场景都是非常动态和以前看不见的,这严重损害了语义分割方法的性能。另外,在高速驾驶期间传统相机的延迟将进一步降低时间尺寸中的上下文信息。因此,我们建议从基于事件的数据提取动态上下文,以更高的时间分辨率来增强静态RGB图像,即使对于来自运动模糊,碰撞,变形,翻转等的流量事故而言,此外,为评估分割交通事故中的性能,我们提供了一个像素 - 明智的注释事故数据集,即Dada-Seg,其中包含来自交通事故的各种临界情景。我们的实验表明,基于事件的数据可以通过在事故中保留快速移动的前景(碰撞物体)的微粒运动来提供互补信息以在不利条件下稳定语义分割。我们的方法在拟议的事故数据集中实现了+ 8.2%的性能增益,超过了20多种最先进的语义细分方法。已经证明该提案对于在多个源数据库中学到的模型,包括CityScapes,Kitti-360,BDD和Apolloscape的模型始终如一。
translated by 谷歌翻译
由于缺乏大规模标记的3D数据集,大多数3D神经网络都是从划痕训练。在本文中,我们通过利用来自丰富的2D数据集学习的2D网络来介绍一种新的3D预预测方法。我们提出了通过将像素级和点级别特征映射到同一嵌入空间中的对比度的像素到点知识转移来有效地利用2D信息。由于2D和3D网络之间的异构性质,我们介绍了后投影功能以对准2D和3D之间的功能以使转移成为可能。此外,我们设计了一个上采样功能投影层,以增加高级2D特征图的空间分辨率,这使得能够学习细粒度的3D表示。利用普雷累染的2D网络,所提出的预介绍过程不需要额外的2D或3D标记数据,进一步缓解了昂贵的3D数据注释成本。据我们所知,我们是第一个利用现有的2D培训的权重,以预先rain 3D深度神经网络。我们的密集实验表明,使用2D知识预订的3D模型可以通过各种真实世界3D下游任务进行3D网络的性能。
translated by 谷歌翻译