Unlike traditional distributed machine learning, federated learning stores data locally for training and then aggregates the models on the server, which solves the data security problem that may arise in traditional distributed machine learning. However, during the training process, the transmission of model parameters can impose a significant load on the network bandwidth. It has been pointed out that the vast majority of model parameters are redundant during model parameter transmission. In this paper, we explore the data distribution law of selected partial model parameters on this basis, and propose a deep hierarchical quantization compression algorithm, which further compresses the model and reduces the network load brought by data transmission through the hierarchical quantization of model parameters. And we adopt a dynamic sampling strategy for the selection of clients to accelerate the convergence of the model. Experimental results on different public datasets demonstrate the effectiveness of our algorithm.
translated by 谷歌翻译
联合学习(FL)以来已提议已应用于许多领域,例如信用评估,医疗等。由于网络或计算资源的差异,客户端可能不会同时更新其渐变可能需要花费等待或闲置的时间。这就是为什么需要异步联合学习(AFL)方法。AFL中的主要瓶颈是沟通。如何在模型性能和通信成本之间找到平衡是AFL的挑战。本文提出了一种新的AFL框架VAFL。我们通过足够的实验验证了算法的性能。实验表明,VAFL可以通过48.23 \%的平均通信压缩速率降低约51.02 \%的通信时间,并允许模型更快地收敛。代码可用于\ url {https://github.com/robai-lab/vafl}
translated by 谷歌翻译
Federated Learning allows multiple parties to jointly train a deep learning model on their combined data, without any of the participants having to reveal their local data to a centralized server. This form of privacy-preserving collaborative learning however comes at the cost of a significant communication overhead during training. To address this problem, several compression methods have been proposed in the distributed training literature that can reduce the amount of required communication by up to three orders of magnitude. These existing methods however are only of limited utility in the Federated Learning setting, as they either only compress the upstream communication from the clients to the server (leaving the downstream communication uncompressed) or only perform well under idealized conditions such as iid distribution of the client data, which typically can not be found in Federated Learning. In this work, we propose Sparse Ternary Compression (STC), a new compression framework that is specifically designed to meet the requirements of the Federated Learning environment. STC extends the existing compression technique of top-k gradient sparsification with a novel mechanism to enable downstream compression as well as ternarization and optimal Golomb encoding of the weight updates. Our experiments on four different learning tasks demonstrate that STC distinctively outperforms Federated Averaging in common Federated Learning scenarios where clients either a) hold non-iid data, b) use small batch sizes during training, or where c) the number of clients is large and the participation rate in every communication round is low. We furthermore show that even if the clients hold iid data and use medium sized batches for training, STC still behaves paretosuperior to Federated Averaging in the sense that it achieves fixed target accuracies on our benchmarks within both fewer training iterations and a smaller communication budget. These results advocate for a paradigm shift in Federated optimization towards high-frequency low-bitwidth communication, in particular in bandwidth-constrained learning environments.
translated by 谷歌翻译
Federated learning has recently been applied to recommendation systems to protect user privacy. In federated learning settings, recommendation systems can train recommendation models only collecting the intermediate parameters instead of the real user data, which greatly enhances the user privacy. Beside, federated recommendation systems enable to collaborate with other data platforms to improve recommended model performance while meeting the regulation and privacy constraints. However, federated recommendation systems faces many new challenges such as privacy, security, heterogeneity and communication costs. While significant research has been conducted in these areas, gaps in the surveying literature still exist. In this survey, we-(1) summarize some common privacy mechanisms used in federated recommendation systems and discuss the advantages and limitations of each mechanism; (2) review some robust aggregation strategies and several novel attacks against security; (3) summarize some approaches to address heterogeneity and communication costs problems; (4)introduce some open source platforms that can be used to build federated recommendation systems; (5) present some prospective research directions in the future. This survey can guide researchers and practitioners understand the research progress in these areas.
translated by 谷歌翻译
大规模的神经网络具有相当大的表现力。它们非常适合工业应用中的复杂学习任务。但是,在当前联邦学习(FL)范式下,大型模型对训练构成了重大挑战。现有的有效FL训练的方法通常利用模型参数辍学。但是,操纵单个模型参数不仅在训练大规模FL模型时有意义地减少通信开销效率低下,而且还可能不利于缩放工作和模型性能,如最近的研究所示。为了解决这些问题,我们提出了联合的机会障碍辍学方法(FEDOBD)方法。关键的新颖性是,它将大规模模型分解为语义块,以便FL参与者可以机会上传量化的块,这些块被认为对训练该模型非常重要,以供FL服务器进行聚合。基于多个现实世界数据集的五种最先进方法评估FEDOBD的广泛实验表明,与最佳性能基线方法相比,它将整体通信开销降低了70%以上,同时达到了最高的测试准确性。据我们所知,FEDOBD是在块级别而不是在单个参数级别上执行FL模型上辍学的第一种方法。
translated by 谷歌翻译
联合学习(FL)是一个新的人工智能概念,它使得互联网(IoT)设备能够学习协作模型,而无需将原始数据发送到集中的节点进行处理。尽管有许多优势,但在物联网设备上的计算资源较低,交换模型参数的高通信成本使得FL在大型物联网网络中的应用非常有限。在这项工作中,我们为非常大的物联网网络开发了一种新型的FL压缩方案,称为高压联合学习(HCFL)。 HCFL可以减少FL过程的数据负载,而无需更改其结构和超参数。通过这种方式,我们不仅可以显着降低沟通成本,而且使密集学习过程更适应低计算资源的物联网设备。此外,我们研究了IoT设备数量与FL模型的收敛水平之间的关系,从而更好地评估了FL过程的质量。我们在模拟和数学分析中演示了HCFL方案。我们提出的理论研究可以用作最低满意度的水平,证明在满足确定的配置时,FL过程可以实现良好的性能。因此,我们表明HCFL适用于具有许多物联网设备的任何FLENTECTED网络。
translated by 谷歌翻译
With the development and progress of science and technology, the Internet of Things(IoT) has gradually entered people's lives, bringing great convenience to our lives and improving people's work efficiency. Specifically, the IoT can replace humans in jobs that they cannot perform. As a new type of IoT vehicle, the current status and trend of research on Unmanned Aerial Vehicle(UAV) is gratifying, and the development prospect is very promising. However, privacy and communication are still very serious issues in drone applications. This is because most drones still use centralized cloud-based data processing, which may lead to leakage of data collected by drones. At the same time, the large amount of data collected by drones may incur greater communication overhead when transferred to the cloud. Federated learning as a means of privacy protection can effectively solve the above two problems. However, federated learning when applied to UAV networks also needs to consider the heterogeneity of data, which is caused by regional differences in UAV regulation. In response, this paper proposes a new algorithm FedBA to optimize the global model and solves the data heterogeneity problem. In addition, we apply the algorithm to some real datasets, and the experimental results show that the algorithm outperforms other algorithms and improves the accuracy of the local model for UAVs.
translated by 谷歌翻译
由于客户端的通信资源有限和大量的模型参数,大规模分布式学习任务遭受通信瓶颈。梯度压缩是通过传输压缩梯度来减少通信负载的有效方法。由于在随机梯度下降的情况下,相邻轮的梯度可能具有高相关,因为他们希望学习相同的模型,提出了一种用于联合学习的实用梯度压缩方案,它使用历史梯度来压缩梯度并且基于Wyner-Ziv编码但没有任何概率的假设。我们还在实时数据集上实现了我们的渐变量化方法,我们的方法的性能优于前一个方案。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
Federated learning achieves joint training of deep models by connecting decentralized data sources, which can significantly mitigate the risk of privacy leakage. However, in a more general case, the distributions of labels among clients are different, called ``label distribution skew''. Directly applying conventional federated learning without consideration of label distribution skew issue significantly hurts the performance of the global model. To this end, we propose a novel federated learning method, named FedMGD, to alleviate the performance degradation caused by the label distribution skew issue. It introduces a global Generative Adversarial Network to model the global data distribution without access to local datasets, so the global model can be trained using the global information of data distribution without privacy leakage. The experimental results demonstrate that our proposed method significantly outperforms the state-of-the-art on several public benchmarks. Code is available at \url{https://github.com/Sheng-T/FedMGD}.
translated by 谷歌翻译
分布式深度学习框架,如联合学习(FL)及其变体都是在广泛的Web客户端和移动/ IOT设备上实现个性化体验。然而,由于模型参数的爆炸增长(例如,十亿参数模型),基于FL的框架受到客户的计算资源的限制。拆分学习(SL),最近的框架,通过拆分客户端和服务器之间的模型培训来减少客户端计算负载。这种灵活性对于低计算设置非常有用,但通常以带宽消耗的增加成本而实现,并且可能导致次优化会聚,尤其是当客户数据异构时。在这项工作中,我们介绍了adasplit,通过降低带宽消耗并提高异构客户端的性能,使得能够将SL有效地缩放到低资源场景。为了捕获和基准的分布式深度学习的多维性质,我们还介绍了C3分数,是评估资源预算下的性能。我们通过与强大联邦和分裂学习基线的大量实验比较进行了大量实验比较,验证了adasplit在有限的资源下的有效性。我们还展示了adasplit中关键设计选择的敏感性分析,该选择验证了adasplit在可变资源预算中提供适应性权衡的能力。
translated by 谷歌翻译
如今,信息技术的发展正在迅速增长。在大数据时代,个人信息的隐私更加明显。主要的挑战是找到一种方法来确保在发布和分析数据时不会披露敏感的个人信息。在信任的第三方数据策展人的假设上建立了集中式差异隐私。但是,这个假设在现实中并不总是正确的。作为一种新的隐私保护模型,当地的差异隐私具有相对强大的隐私保证。尽管联邦学习相对是一种用于分布式学习的隐私方法,但它仍然引入了各种隐私问题。为了避免隐私威胁并降低沟通成本,我们建议将联合学习和当地差异隐私与动量梯度下降整合在一起,以提高机器学习模型的性能。
translated by 谷歌翻译
联合学习允许多个参与者在不公开数据隐私的情况下协作培训高效模型。但是,这种分布式的机器学习培训方法容易受到拜占庭客户的攻击,拜占庭客户通过修改模型或上传假梯度来干扰全球模型的训练。在本文中,我们提出了一种基于联邦学习(CMFL)的新型无服务器联合学习框架委员会机制,该机制可以确保算法具有融合保证的鲁棒性。在CMFL中,设立了一个委员会系统,以筛选上载已上传的本地梯度。 The committee system selects the local gradients rated by the elected members for the aggregation procedure through the selection strategy, and replaces the committee member through the election strategy.基于模型性能和防御的不同考虑,设计了两种相反的选择策略是为了精确和鲁棒性。广泛的实验表明,与典型的联邦学习相比,与传统的稳健性相比,CMFL的融合和更高的准确性比传统的稳健性,以分散的方法的方式获得了传统的耐受性算法。此外,我们理论上分析并证明了在不同的选举和选择策略下CMFL的收敛性,这与实验结果一致。
translated by 谷歌翻译
联合学习(FL)使多个设备能够在不共享其个人数据的情况下协作学习全局模型。在现实世界应用中,不同的各方可能具有异质数据分布和有限的通信带宽。在本文中,我们有兴趣提高FL系统的通信效率。我们根据梯度规范的重要性调查和设计设备选择策略。特别是,我们的方法包括在每个通信轮中选择具有最高梯度值的最高规范的设备。我们研究了这种选择技术的收敛性和性能,并将其与现有技术进行比较。我们用非IID设置执行几个实验。结果显示了我们的方法的收敛性,与随机选择比较的测试精度相当大。
translated by 谷歌翻译
隐私和沟通效率是联邦神经网络培训中的重要挑战,并将它们组合仍然是一个公开的问题。在这项工作中,我们开发了一种统一高度压缩通信和差异隐私(DP)的方法。我们引入基于相对熵编码(REC)到联合设置的压缩技术。通过对REC进行微小的修改,我们获得了一种可怕的私立学习算法,DP-REC,并展示了如何计算其隐私保证。我们的实验表明,DP-REC大大降低了通信成本,同时提供与最先进的隐私保证。
translated by 谷歌翻译
Federated Learning is a machine learning setting where the goal is to train a highquality centralized model while training data remains distributed over a large number of clients each with unreliable and relatively slow network connections. We consider learning algorithms for this setting where on each round, each client independently computes an update to the current model based on its local data, and communicates this update to a central server, where the client-side updates are aggregated to compute a new global model. The typical clients in this setting are mobile phones, and communication efficiency is of the utmost importance. In this paper, we propose two ways to reduce the uplink communication costs: structured updates, where we directly learn an update from a restricted space parametrized using a smaller number of variables, e.g. either low-rank or a random mask; and sketched updates, where we learn a full model update and then compress it using a combination of quantization, random rotations, and subsampling before sending it to the server. Experiments on both convolutional and recurrent networks show that the proposed methods can reduce the communication cost by two orders of magnitude. * Work performed while also affiliated with University of Edinburgh.
translated by 谷歌翻译
Federated Learning (FL) is a machine learning paradigm that enables the training of a shared global model across distributed clients while keeping the training data local. While most prior work on designing systems for FL has focused on using stateful always running components, recent work has shown that components in an FL system can greatly benefit from the usage of serverless computing and Function-as-a-Service technologies. To this end, distributed training of models with severless FL systems can be more resource-efficient and cheaper than conventional FL systems. However, serverless FL systems still suffer from the presence of stragglers, i.e., slow clients due to their resource and statistical heterogeneity. While several strategies have been proposed for mitigating stragglers in FL, most methodologies do not account for the particular characteristics of serverless environments, i.e., cold-starts, performance variations, and the ephemeral stateless nature of the function instances. Towards this, we propose FedLesScan, a novel clustering-based semi-asynchronous training strategy, specifically tailored for serverless FL. FedLesScan dynamically adapts to the behaviour of clients and minimizes the effect of stragglers on the overall system. We implement our strategy by extending an open-source serverless FL system called FedLess. Moreover, we comprehensively evaluate our strategy using the 2nd generation Google Cloud Functions with four datasets and varying percentages of stragglers. Results from our experiments show that compared to other approaches FedLesScan reduces training time and cost by an average of 8% and 20% respectively while utilizing clients better with an average increase in the effective update ratio of 17.75%.
translated by 谷歌翻译
Federated learning (FL) is an effective technique to directly involve edge devices in machine learning training while preserving client privacy. However, the substantial communication overhead of FL makes training challenging when edge devices have limited network bandwidth. Existing work to optimize FL bandwidth overlooks downstream transmission and does not account for FL client sampling. In this paper we propose GlueFL, a framework that incorporates new client sampling and model compression algorithms to mitigate low download bandwidths of FL clients. GlueFL prioritizes recently used clients and bounds the number of changed positions in compression masks in each round. Across three popular FL datasets and three state-of-the-art strategies, GlueFL reduces downstream client bandwidth by 27% on average and reduces training time by 29% on average.
translated by 谷歌翻译
Federated learning (FL) allows multiple clients cooperatively train models without disclosing local data. However, the existing works fail to address all these practical concerns in FL: limited communication resources, dynamic network conditions and heterogeneous client properties, which slow down the convergence of FL. To tackle the above challenges, we propose a heterogeneity-aware FL framework, called FedCG, with adaptive client selection and gradient compression. Specifically, the parameter server (PS) selects a representative client subset considering statistical heterogeneity and sends the global model to them. After local training, these selected clients upload compressed model updates matching their capabilities to the PS for aggregation, which significantly alleviates the communication load and mitigates the straggler effect. We theoretically analyze the impact of both client selection and gradient compression on convergence performance. Guided by the derived convergence rate, we develop an iteration-based algorithm to jointly optimize client selection and compression ratio decision using submodular maximization and linear programming. Extensive experiments on both real-world prototypes and simulations show that FedCG can provide up to 5.3$\times$ speedup compared to other methods.
translated by 谷歌翻译
机器学习模型已在移动网络中部署,以处理来自不同层的数据,以实现自动化网络管理和设备的智能。为了克服集中式机器学习的高度沟通成本和严重的隐私问题,已提出联合学习(FL)来实现网络设备之间的分布式机器学习。虽然在FL中广泛研究了计算和通信限制,但仍未探索设备存储对FL性能的影响。如果没有有效有效的数据选择政策来过滤设备上的大量流媒体数据,经典FL可能会遭受更长的模型训练时间(超过$ 4 \ times $)和显着的推理准确性(超过$ 7 \%\%$),则遭受了损失,观察到了。在我们的实验中。在这项工作中,我们迈出了第一步,考虑使用有限的在设备存储的FL的在线数据选择。我们首先定义了一个新的数据评估度量,以在FL中进行数据选择:在设备数据样本上,局部梯度在所有设备的数据上投影到全球梯度上。我们进一步设计\ textbf {ode},一个\ textbf {o} nline \ textbf {d} ata s \ textbf {e textbf {e} fl for f for fl f textbf {o}的框架,用于协作网络设备,以协作存储有价值的数据示例,并保证用于快速的理论保证同时提高模型收敛并增强最终模型精度。一项工业任务(移动网络流量分类)和三个公共任务(综合任务,图像分类,人类活动识别)的实验结果显示了ODE的显着优势,而不是最先进的方法。特别是,在工业数据集上,ODE的成就高达$ 2.5 \ times $ $加速的培训时间和6美元的最终推理准确性增加,并且在实践环境中对各种因素都有强大的态度。
translated by 谷歌翻译