在医疗诊断的世界中,采用各种深度学习技术是非常普遍的,也是有效的,并且当涉及到视网膜光学相干断层扫描(OCT)行业时,其陈述同样是正确的,但(i)这些技术有防止医疗专业人员完全信任的黑匣子特征(ii)这些方法的缺乏精度限制了它们在临床和复杂病例中的实施(iii)OCT分类上的现有工程和模型基本上是大而复杂,它们需要相当大量的内存和计算能力,从而降低实时应用中分类器的质量。为了满足这些问题,在本文中,提出了一种自我开发的CNN模型,而且使用石灰的使用相对较小,更简单,引入了可解释的AI对研究,并有助于提高模型的可解释性。此外,此外将成为医疗专家的资产,以获得主要和详细信息,并将帮助他们做出最终决策,并将降低传统深度学习模式的不透明度和脆弱性。
translated by 谷歌翻译
图像垃圾邮件威胁检测一直是互联网惊人扩展的流行研究领域。这项研究提出了一个可解释的框架,用于使用卷积神经网络(CNN)算法和可解释的人工智能(XAI)算法检测垃圾邮件图像。在这项工作中,我们使用CNN模型分别对图像垃圾邮件进行了分类,而hoc XAI方法包括局部可解释的模型不可思议的解释(Lime)和Shapley添加说明(SHAP),以提供有关黑手盒CNN的决定的解释关于垃圾邮件图像检测的模型。我们在6636图像数据集上训练,然后评估拟议方法的性能,包括垃圾邮件图像和从三个不同的公开电子邮件Corpora收集的垃圾邮件图像和正常图像。实验结果表明,根据不同的性能指标,提出的框架实现了令人满意的检测结果,而独立模型的XAI算法可以为不同模型的决策提供解释,以比较未来的研究。
translated by 谷歌翻译
随着世界各地的COVID-19病毒感染的下降,Monkeypox病毒正在缓慢地出现。人们害怕它,认为它看起来像是Covid-19的大流行。因此,在广泛的社区传播之前,至关重要的是检测到它们。基于AI的检测可以帮助他们在早期识别它们。在本文中,我们首先比较了13个不同的预训练的深度学习(DL)模型,以检测蒙基氧基病毒。为此,我们首先将它们添加到所有这些层中,并使用四个完善的措施进行分析:精度,召回,F1得分和准确性。在确定了表现最佳的DL模型之后,我们将它们整合以利用从其获得的概率输出的多数投票来提高整体绩效。我们在公开可用的数据集上执行实验,这表明我们的集合方法提供了精度,召回,F1得分和精度为85.44 \%,85.47 \%,85.40 \%和87.13 \%。这些令人鼓舞的结果表明,所提出的方法适用于卫生从业人员进行大规模筛查。
translated by 谷歌翻译
Deep convolutional neural networks have proven their effectiveness, and have been acknowledged as the most dominant method for image classification. However, a severe drawback of deep convolutional neural networks is poor explainability. Unfortunately, in many real-world applications, users need to understand the rationale behind the predictions of deep convolutional neural networks when determining whether they should trust the predictions or not. To resolve this issue, a novel genetic algorithm-based method is proposed for the first time to automatically evolve local explanations that can assist users to assess the rationality of the predictions. Furthermore, the proposed method is model-agnostic, i.e., it can be utilised to explain any deep convolutional neural network models. In the experiments, ResNet is used as an example model to be explained, and the ImageNet dataset is selected as the benchmark dataset. DenseNet and MobileNet are further explained to demonstrate the model-agnostic characteristic of the proposed method. The evolved local explanations on four images, randomly selected from ImageNet, are presented, which show that the evolved local explanations are straightforward to be recognised by humans. Moreover, the evolved explanations can explain the predictions of deep convolutional neural networks on all four images very well by successfully capturing meaningful interpretable features of the sample images. Further analysis based on the 30 runs of the experiments exhibits that the evolved local explanations can also improve the probabilities/confidences of the deep convolutional neural network models in making the predictions. The proposed method can obtain local explanations within one minute, which is more than ten times faster than LIME (the state-of-the-art method).
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
植物疾病是全球作物损失的主要原因,对世界经济产生了影响。为了解决这些问题,智能农业解决方案正在发展,将物联网和机器学习结合起来,以进行早期疾病检测和控制。许多这样的系统使用基于视觉的机器学习方法进行实时疾病检测和诊断。随着深度学习技术的发展,已经出现了新方法,这些方法采用卷积神经网络进行植物性疾病检测和鉴定。基于视觉的深度学习的另一个趋势是使用视觉变压器,事实证明,这些变压器是分类和其他问题的强大模型。但是,很少研究视力变压器以进行植物病理应用。在这项研究中,为植物性疾病鉴定提出了一个启用视觉变压器的卷积神经网络模型。提出的模型将传统卷积神经网络的能力与视觉变压器有效地识别出多种农作物的大量植物疾病。拟议的模型具有轻巧的结构,只有80万个可训练的参数,这使其适合基于物联网的智能农业服务。 PlantXvit的性能在五个公开可用的数据集上进行了评估。拟议的PlantXvit网络在所有五个数据集上的性能要比五种最先进的方法更好。即使在挑战性的背景条件下,识别植物性疾病的平均准确性分别超过了苹果,玉米和稻米数据集的93.55%,92.59%和98.33%。使用梯度加权的类激活图和局部可解释的模型不可思议的解释来评估所提出模型的解释性效率。
translated by 谷歌翻译
人工智能(AI)模型的黑框性质不允许用户理解和有时信任该模型创建的输出。在AI应用程序中,不仅结果,而且结果的决策路径至关重要,此类Black-Box AI模型还不够。可解释的人工智能(XAI)解决了此问题,并定义了用户可解释的一组AI模型。最近,有几种XAI模型是通过在医疗保健,军事,能源,金融和工业领域等各个应用领域的黑盒模型缺乏可解释性和解释性来解决有关的问题。尽管XAI的概念最近引起了广泛关注,但它与物联网域的集成尚未完全定义。在本文中,我们在物联网域范围内使用XAI模型对最近的研究进行了深入和系统的综述。我们根据其方法和应用领域对研究进行分类。此外,我们旨在专注于具有挑战性的问题和开放问题,并为未来的方向指导开发人员和研究人员进行未来的未来调查。
translated by 谷歌翻译
心脏肿大确实是一种心脏肿大的医学疾病。如果早点被捕获,心脏肿大最好处理,因此早期发现至关重要。数十年来,胸部X射线是最常用的X射线照相检查之一,一直用于检测和可视化人体器官异常。 X射线也是心脏肿瘤的重要医学诊断工具。即使对于领域专家,将许多类型的疾病与X射线区分开是一项艰巨且耗时的任务。深度学习模型在大型数据集时也是最有效的,但是由于隐私问题,大型数据集在医疗行业内部很少可用。这项研究介绍了一种基于学习的基于学习的定制的u-NET模型,用于检测心脏肿瘤疾病。在训练阶段,使用了来自“ ChestX-Ray8”开源真实数据集的胸部X射线图像。为了减少计算时间,此模型在进行训练步骤之前,在进行数据预处理,图像改进,图像压缩和分类。这项工作使用胸部X射线图像数据集模拟并产生了94%的诊断准确性,灵敏度为96.2%,特异性为92.5%,这比先前培训的模型发现以识别心脏全肿瘤疾病。
translated by 谷歌翻译
卷积神经网络(CNN)以其出色的功能提取能力而闻名,可以从数据中学习模型,但被用作黑匣子。对卷积滤液和相关特征的解释可以帮助建立对CNN的理解,以区分各种类别。在这项工作中,我们关注的是CNN模型的解释性,称为CNNexplain,该模型用于COVID-19和非CoVID-19分类,重点是卷积过滤器的特征解释性,以及这些功能如何有助于分类。具体而言,我们使用了各种可解释的人工智能(XAI)方法,例如可视化,SmoothGrad,Grad-Cam和Lime来提供卷积滤液的解释及相关特征及其在分类中的作用。我们已经分析了使用干咳嗽光谱图的这些方法的解释。从石灰,光滑果实和GRAD-CAM获得的解释结果突出了不同频谱图的重要特征及其与分类的相关性。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
In this paper, deep-learning-based approaches namely fine-tuning of pretrained convolutional neural networks (VGG16 and VGG19), and end-to-end training of a developed CNN model, have been used in order to classify X-Ray images into four different classes that include COVID-19, normal, opacity and pneumonia cases. A dataset containing more than 20,000 X-ray scans was retrieved from Kaggle and used in this experiment. A two-stage classification approach was implemented to be compared to the one-shot classification approach. Our hypothesis was that a two-stage model will be able to achieve better performance than a one-shot model. Our results show otherwise as VGG16 achieved 95% accuracy using one-shot approach over 5-fold of training. Future work will focus on a more robust implementation of the two-stage classification model Covid-TSC. The main improvement will be allowing data to flow from the output of stage-1 to the input of stage-2, where stage-1 and stage-2 models are VGG16 models fine-tuned on the Covid-19 dataset.
translated by 谷歌翻译
人工智能在医学成像,尤其是组织病理学成像方面具有巨大的希望。但是,人工智能算法无法完全解释决策过程中的思维过程。这种情况带来了解释性的问题,即黑匣子问题,人工智能应用程序的议程:一种算法只是在没有说明给定图像的原因的情况下做出响应。为了克服问题并提高解释性,可解释的人工智能(XAI)脱颖而出,并激发了许多研究人员的利益。在此背景下,本研究使用深度学习算法检查了一个新的原始数据集,并使用XAI应用程序之一(GRAD-CAM)可视化输出。之后,对这些图像的病理学家进行了详细的问卷调查。决策过程和解释都已验证,并测试了输出的准确性。这项研究的结果极大地帮助病理学家诊断旁结核病。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
Deep learning (DL) analysis of Chest X-ray (CXR) and Computed tomography (CT) images has garnered a lot of attention in recent times due to the COVID-19 pandemic. Convolutional Neural Networks (CNNs) are well suited for the image analysis tasks when trained on humongous amounts of data. Applications developed for medical image analysis require high sensitivity and precision compared to any other fields. Most of the tools proposed for detection of COVID-19 claims to have high sensitivity and recalls but have failed to generalize and perform when tested on unseen datasets. This encouraged us to develop a CNN model, analyze and understand the performance of it by visualizing the predictions of the model using class activation maps generated using (Gradient-weighted Class Activation Mapping) Grad-CAM technique. This study provides a detailed discussion of the success and failure of the proposed model at an image level. Performance of the model is compared with state-of-the-art DL models and shown to be comparable. The data and code used are available at https://github.com/aleesuss/c19.
translated by 谷歌翻译
人工智能被出现为众多临床应用诊断和治疗决策的有用援助。由于可用数据和计算能力的快速增加,深度神经网络的性能与许多任务中的临床医生相同或更好。为了符合信任AI的原则,AI系统至关重要的是透明,强大,公平和确保责任。由于对决策过程的具体细节缺乏了解,目前的深神经系统被称为黑匣子。因此,需要确保在常规临床工作流中纳入常规神经网络之前的深度神经网络的可解释性。在这一叙述审查中,我们利用系统的关键字搜索和域专业知识来确定已经基于所产生的解释和技术相似性的类型的医学图像分析应用的深度学习模型来确定九种不同类型的可解释方法。此外,我们报告了评估各种可解释方法产生的解释的进展。最后,我们讨论了局限性,提供了利用可解释性方法和未来方向的指导,了解医学成像分析深度神经网络的解释性。
translated by 谷歌翻译
为了产生最大的影响,必须使用基于证据的决策制定公共卫生计划。创建机器学习算法是为了收集,存储,处理和分析数据以提供知识和指导决策。任何监视系统的关键部分是图像分析。截至最近,计算机视觉和机器学习的社区最终对此感到好奇。这项研究使用各种机器学习和图像处理方法来检测和预测疟疾疾病。在我们的研究中,我们发现了深度学习技术作为具有更广泛适用于疟疾检测的智能工具的潜力,通过协助诊断病情,可以使医生受益。我们研究了针对计算机框架和组织的深度学习的共同限制,计算需要准备数据,准备开销,实时执行和解释能力,并发现对这些限制的轴承的未来询问。
translated by 谷歌翻译
由于深度学习在放射学领域被广泛使用,因此在使用模型进行诊断时,这种模型的解释性越来越成为获得临床医生的信任至关重要的。在这项研究中,使用U-NET架构进行了三个实验集,以改善分类性能,同时通过在训练过程中结合热图生成器来增强与模型相对应的热图。所有实验均使用包含胸部X光片的数据集,来自三个条件之一(“正常”,“充血性心力衰竭(CHF)”和“肺炎”)的相关标签,以及有关放射科医师眼神坐标的数值信息在图像上。引入该数据集的论文(A. Karargyris和Moradi,2021年)开发了一个U-NET模型,该模型被视为这项研究的基线模型,以显示如何将眼目光数据用于多模式培训中的眼睛凝视数据以进行多模式培训以进行多模式训练。解释性改进。为了比较分类性能,测量了接收器操作特征曲线(AUC)下面积的95%置信区间(CI)。最佳方法的AUC为0.913(CI:0.860-0.966)。最大的改进是“肺炎”和“ CHF”类别,基线模型最努力地进行分类,导致AUCS 0.859(CI:0.732-0.957)和0.962(CI:0.933-0.989)。所提出的方法的解码器还能够产生概率掩模,以突出模型分类中确定的图像部分,类似于放射科医生的眼睛凝视数据。因此,这项工作表明,将热图发生器和眼睛凝视信息纳入训练可以同时改善疾病分类,并提供可解释的视觉效果,与放射线医生在进行诊断时如何看待胸部X光片。
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
人工神经网络(ANN)能够学习,纠正错误和将大量原始数据转化为治疗和护理的有用医疗决策,这增加了增强患者安全和护理质量的普及。因此,本文审查了ANN的关键作用为患者医疗保健决策提供有价值的见解和有效的疾病诊断。我们彻底审查了现有文献中的不同类型的ANN,以便为复杂应用程序进行高级ANNS适配。此外,我们还调查Ann的各种疾病诊断和治疗的进步,例如病毒,皮肤,癌症和Covid-19。此外,我们提出了一种名为ConxNet的新型深度卷积神经网络(CNN)模型,用于提高Covid-19疾病的检测准确性。 ConxNet经过培训并使用不同的数据集进行测试,它达到了超过97%的检测精度和精度,这明显优于现有型号。最后,我们突出了未来的研究方向和挑战,例如算法的复杂性,可用数据,隐私和安全性,以及与ANN的生物传染集成。这些研究方向需要大幅关注改善医疗诊断和治疗应用的ANN的范围。
translated by 谷歌翻译
Approximately 1.25 million people in the United States are treated each year for burn injuries. Precise burn injury classification is an important aspect of the medical AI field. In this work, we propose an explainable human-in-the-loop framework for improving burn ultrasound classification models. Our framework leverages an explanation system based on the LIME classification explainer to corroborate and integrate a burn expert's knowledge -- suggesting new features and ensuring the validity of the model. Using this framework, we discover that B-mode ultrasound classifiers can be enhanced by supplying textural features. More specifically, we confirm that texture features based on the Gray Level Co-occurance Matrix (GLCM) of ultrasound frames can increase the accuracy of transfer learned burn depth classifiers. We test our hypothesis on real data from porcine subjects. We show improvements in the accuracy of burn depth classification -- from ~88% to ~94% -- once modified according to our framework.
translated by 谷歌翻译