由于新型神经网络体系结构的设计和大规模数据集的可用性,对象检测方法在过去几年中取得了令人印象深刻的改进。但是,当前的方法有一个重要的限制:他们只能检测到在训练时间内观察到的类,这只是检测器在现实世界中可能遇到的所有类的子集。此外,在训练时间通常不考虑未知类别的存在,从而导致方法甚至无法检测到图像中存在未知对象。在这项工作中,我们解决了检测未知对象的问题,称为开放集对象检测。我们提出了一种名为Unkad的新颖培训策略,能够预测未知的对象,而无需对其进行任何注释,利用训练图像背景中已经存在的非注释对象。特别是,unkad首先利用更快的R-CNN的四步训练策略,识别和伪标签未知对象,然后使用伪通量来训练其他未知类。尽管UNKAD可以直接检测未知的对象,但我们将其与以前未知的检测技术相结合,表明它不成本就可以提高其性能。
translated by 谷歌翻译
开放世界对象检测(OWOD)是一个具有挑战性的计算机视觉问题,需要检测未知对象并逐渐学习已确定的未知类别。但是,它不能将未知实例区分为多个未知类。在这项工作中,我们提出了一个新颖的OWOD问题,称为未知分类的开放世界对象检测(UC-OWOD)。 UC-OWOD旨在检测未知实例并将其分类为不同的未知类别。此外,我们制定问题并设计一个两阶段的对象检测器来解决UC-OWOD。首先,使用未知的标签意见建议和未知歧视性分类头用于检测已知和未知对象。然后,构建基于相似性的未知分类和未知聚类改进模块,以区分多个未知类别。此外,设计了两个新颖的评估方案,以评估未知类别的检测。丰富的实验和可视化证明了该方法的有效性。代码可在https://github.com/johnwuzh/uc-owod上找到。
translated by 谷歌翻译
打开世界对象检测(OWOD),模拟知识持续增长的真正动态世界,试图检测已知和未知的类别,并逐步学习所识别的未知组。我们发现,尽管以前的欧瓦德工作建设性地提出了OWOD定义,但实验设置与不合逻辑的基准,令人困惑的度量计算和不当方法是不合理的。在本文中,我们重新思考OWOD实验环境,并提出了五项基本基准原则,以指导OWOD基准建设。此外,我们设计了两个特定于OWOD问题的公平评估协议,从未知课程的角度填充了评估的空白。此外,我们介绍了一个新颖且有效的OWOD框架,其中包含辅助提案顾问(PAD)和特定于类驱逐分类器(CEC)。非参数垫可以帮助RPN识别无需监控的准确未知提案,而CEC通过特定于类的驱逐函数校准过自信的激活边界并滤除令人困惑的预测。在我们的公平基准上进行的综合实验表明,我们的方法在现有的和我们的新指标方面表明了其他最先进的对象检测方法。\脚注{我们的基准和代码可在https://github.com提供/重新驱动/重新驱动。
translated by 谷歌翻译
开放世界对象检测(OWOD)是一个具有挑战性的计算机视觉问题,其中任务是检测一组已知的对象类别,同时识别未知对象。此外,该模型必须逐步学习在下一个培训集中所知的新类。不同于标准对象检测,OWOD设置会对在潜在的未知物体上生成质量候选建议的质量挑战,将未知物体与背景中的未知物体分开并检测不同的未知物体。在这里,我们介绍了一种新的基于端到端的变换器的框架OW-DETR,用于开放世界对象检测。建议的OW-DETR包括三个专用组成部分,即注意力驱动的伪标签,新颖性分类和对象评分,以明确地解决上述OWOD挑战。我们的OW-DETR明确地编码了多尺度上下文信息,具有较少的归纳偏差,使得从已知类传输到未知类,并且可以更好地区分未知对象和背景之间。综合实验是对两个基准进行的:MS-Coco和Pascal VOC。广泛的消融揭示了我们拟议的贡献的优点。此外,我们的模型优于最近引入的OWOD方法矿石,绝对增益在MS-Coco基准测试中的未知召回方面的1.8%至3.3%。在增量对象检测的情况下,OW-DETR以Pascal VOC基准上的所有设置优于最先进的。我们的代码和模型将公开发布。
translated by 谷歌翻译
本文的目的是几次拍摄对象检测(FSOD) - 仅为新类别扩展对象探测器的任务仅给出了一些培训实例。我们介绍了一种简单的伪标签方法来源从训练集提供高质量的伪注释,因为每个新类别,大大增加培训实例的数量和减少类别的不平衡;我们的方法找到了先前未标记的实例。 NA \“IVELY培训使用模型预测产生了次优性能;我们提出了两种提高伪标签过程的精度的新方法:首先,我们引入了一种验证技术,以删除候选人检测,不正确的类标签;第二,我们训练一个专门的模型,可以纠正差的质量边界箱。在这两种新颖步骤之后,我们获得了一大集的高质量伪注释,允许我们的最终探测器培训结束到底。另外,我们展示了我们的方法维护基础类性能,以及FSOD中简单增强的实用性。在Pascal VOC和MS-Coco基准测试的同时,我们的方法与所有射击镜头的现有方法相比,实现了最先进的或第二个最佳性能。
translated by 谷歌翻译
Open world object detection aims at detecting objects that are absent in the object classes of the training data as unknown objects without explicit supervision. Furthermore, the exact classes of the unknown objects must be identified without catastrophic forgetting of the previous known classes when the corresponding annotations of unknown objects are given incrementally. In this paper, we propose a two-stage training approach named Open World DETR for open world object detection based on Deformable DETR. In the first stage, we pre-train a model on the current annotated data to detect objects from the current known classes, and concurrently train an additional binary classifier to classify predictions into foreground or background classes. This helps the model to build an unbiased feature representations that can facilitate the detection of unknown classes in subsequent process. In the second stage, we fine-tune the class-specific components of the model with a multi-view self-labeling strategy and a consistency constraint. Furthermore, we alleviate catastrophic forgetting when the annotations of the unknown classes becomes available incrementally by using knowledge distillation and exemplar replay. Experimental results on PASCAL VOC and MS-COCO show that our proposed method outperforms other state-of-the-art open world object detection methods by a large margin.
translated by 谷歌翻译
许多开放世界应用程序需要检测新的对象,但最先进的对象检测和实例分段网络在此任务中不屈服。关键问题在于他们假设没有任何注释的地区应被抑制为否定,这教导了将未经讨犯的对象视为背景的模型。为了解决这个问题,我们提出了一个简单但令人惊讶的强大的数据增强和培训方案,我们呼唤学习来检测每件事(LDET)。为避免抑制隐藏的对象,背景对象可见但未标记,我们粘贴在从原始图像的小区域采样的背景图像上粘贴带有的注释对象。由于仅对这种综合增强的图像培训遭受域名,我们将培训与培训分为两部分:1)培训区域分类和回归头在增强图像上,2)在原始图像上训练掩模头。通过这种方式,模型不学习将隐藏对象作为背景分类,同时概括到真实图像。 LDET导致开放式世界实例分割任务中的许多数据集的重大改进,表现出CoCo上的交叉类别概括的基线,以及对UVO和城市的交叉数据集评估。
translated by 谷歌翻译
基于深度学习的对象建议方法已在许多计算机视觉管道中取得了重大进展。但是,当前的最新提案网络使用封闭世界的假设,这意味着它们仅接受培训以检测培训课程的实例,同时将每个其他区域视为背景。这种解决方案的样式无法对分发对象进行高度召回,因此可以在可以观察到新颖的对象类别类别的现实开放世界应用程序中使用它。为了更好地检测所有对象,我们提出了一个无分类的自我训练的建议网络(STPN),该提案网络(STPN)利用了一种新型的自我训练优化策略,并结合了动态加权损失功能,以解决诸如类不平衡和伪标签的不确定性之类的挑战。我们的模型不仅旨在在现有的乐观开放世界基准中表现出色,而且在具有重大标签偏见的具有挑战性的操作环境中。为了展示这一点,当培训数据包含(1)标记类中的多样性较小,并且(2)标记实例较少时,我们就设计了两个挑战来测试建议模型的概括。我们的结果表明,STPN在所有任务上都实现了最新的对象概括。
translated by 谷歌翻译
零拍摄对象检测(ZSD),将传统检测模型扩展到检测来自Unseen类别的对象的任务,已成为计算机视觉中的新挑战。大多数现有方法通过严格的映射传输策略来解决ZSD任务,这可能导致次优ZSD结果:1)这些模型的学习过程忽略了可用的看不见的类信息,因此可以轻松地偏向所看到的类别; 2)原始视觉特征空间并不合适,缺乏歧视信息。为解决这些问题,我们开发了一种用于ZSD的新型语义引导的对比网络,命名为Contrastzsd,一种检测框架首先将对比学习机制带入零拍摄检测的领域。特别地,对比度包括两个语义导向的对比学学习子网,其分别与区域类别和区域区域对之间形成对比。成对对比度任务利用从地面真理标签和预定义的类相似性分布派生的附加监督信号。在那些明确的语义监督的指导下,模型可以了解更多关于看不见的类别的知识,以避免看到概念的偏见问题,同时优化视觉功能的数据结构,以更好地辨别更好的视觉语义对齐。广泛的实验是在ZSD,即Pascal VOC和MS Coco的两个流行基准上进行的。结果表明,我们的方法优于ZSD和广义ZSD任务的先前最先进的。
translated by 谷歌翻译
研究表明,当训练数据缺少注释时,对象检测器的性能下降,即稀疏注释数据。当代方法专注于缺少地面实话注释的代理,无论是伪标签的形式还是通过在训练期间重新称重梯度。在这项工作中,我们重新审视了稀疏注释物体检测的制定。我们观察到稀疏注释的物体检测可以被认为是区域级的半监督对象检测问题。在此洞察力上,我们提出了一种基于区域的半监督算法,它自动识别包含未标记的前景对象的区域。我们的算法然后以不同的方式处理标记和未标记的前景区域,在半监督方法中进行常见做法。为了评估所提出的方法的有效性,我们对普斯卡尔库尔和可可数据集的稀疏注释方法常用的五种分裂进行详尽的实验,并实现最先进的性能。除此之外,我们还表明,我们的方法在标准半监督设置上实现了竞争性能,证明了我们的方法的实力和广泛适用性。
translated by 谷歌翻译
Open World Object Detection (OWOD) is a new and challenging computer vision task that bridges the gap between classic object detection (OD) benchmarks and object detection in the real world. In addition to detecting and classifying seen/labeled objects, OWOD algorithms are expected to detect novel/unknown objects - which can be classified and incrementally learned. In standard OD, object proposals not overlapping with a labeled object are automatically classified as background. Therefore, simply applying OD methods to OWOD fails as unknown objects would be predicted as background. The challenge of detecting unknown objects stems from the lack of supervision in distinguishing unknown objects and background object proposals. Previous OWOD methods have attempted to overcome this issue by generating supervision using pseudo-labeling - however, unknown object detection has remained low. Probabilistic/generative models may provide a solution for this challenge. Herein, we introduce a novel probabilistic framework for objectness estimation, where we alternate between probability distribution estimation and objectness likelihood maximization of known objects in the embedded feature space - ultimately allowing us to estimate the objectness probability of different proposals. The resulting Probabilistic Objectness transformer-based open-world detector, PROB, integrates our framework into traditional object detection models, adapting them for the open-world setting. Comprehensive experiments on OWOD benchmarks show that PROB outperforms all existing OWOD methods in both unknown object detection ($\sim 2\times$ unknown recall) and known object detection ($\sim 10\%$ mAP). Our code will be made available upon publication at https://github.com/orrzohar/PROB.
translated by 谷歌翻译
半弱监督和监督的学习最近在对象检测文献中引起了很大的关注,因为它们可以减轻成功训练深度学习模型所需的注释成本。半监督学习的最先进方法依赖于使用多阶段过程训练的学生老师模型,并大量数据增强。为弱监督的设置开发了自定义网络,因此很难适应不同的检测器。在本文中,引入了一种弱半监督的训练方法,以减少这些训练挑战,但通过仅利用一小部分全标记的图像,并在弱标记图像中提供信息来实现最先进的性能。特别是,我们基于通用抽样的学习策略以在线方式产生伪基真实(GT)边界框注释,消除了对多阶段培训的需求和学生教师网络配置。这些伪GT框是根据通过得分传播过程累积的对象建议的分类得分从弱标记的图像中采样的。 PASCAL VOC数据集的经验结果表明,使用VOC 2007作为完全标记的拟议方法可提高性能5.0%,而VOC 2012作为弱标记数据。同样,有了5-10%的完全注释的图像,我们观察到MAP中的10%以上的改善,表明对图像级注释的适度投资可以大大改善检测性能。
translated by 谷歌翻译
Open-set object detection (OSOD) aims to detect the known categories and identify unknown objects in a dynamic world, which has achieved significant attentions. However, previous approaches only consider this problem in data-abundant conditions, while neglecting the few-shot scenes. In this paper, we seek a solution for the few-shot open-set object detection (FSOSOD), which aims to quickly train a detector based on few samples while detecting all known classes and identifying unknown classes. The main challenge for this task is that few training samples induce the model to overfit on the known classes, resulting in a poor open-set performance. We propose a new FSOSOD algorithm to tackle this issue, named Few-shOt Open-set Detector (FOOD), which contains a novel class weight sparsification classifier (CWSC) and a novel unknown decoupling learner (UDL). To prevent over-fitting, CWSC randomly sparses parts of the normalized weights for the logit prediction of all classes, and then decreases the co-adaptability between the class and its neighbors. Alongside, UDL decouples training the unknown class and enables the model to form a compact unknown decision boundary. Thus, the unknown objects can be identified with a confidence probability without any pseudo-unknown samples for training. We compare our method with several state-of-the-art OSOD methods in few-shot scenes and observe that our method improves the recall of unknown classes by 5%-9% across all shots in VOC-COCO dataset setting.
translated by 谷歌翻译
开放式对象检测(OSOD)最近引起了广泛的关注。它是在正确检测/分类已知对象的同时检测未知对象。我们首先指出,最近的研究中考虑的OSOD方案,该方案考虑了类似于开放式识别(OSR)的无限种类的未知物体,这是一个基本问题。也就是说,我们无法确定要检测到的内容,而对于这种无限的未知对象,这是检测任务所必需的。这个问题导致了对未知对象检测方法的性能的评估困难。然后,我们介绍了OSOD的新颖方案,该方案仅处理与已知对象共享超级类别的未知对象。它具有许多真实的应用程序,例如检测越来越多的细粒对象。这个新环境摆脱了上述问题和评估困难。此外,由于已知和未知对象之间的视觉相似性,它使检测到未知对象更加现实。我们通过实验结果表明,基于标准检测器类别预测的不确定性的简单方法优于先前设置中测试的当前最新OSOD方法。
translated by 谷歌翻译
Out-of-distribution (OOD) detection has attracted a large amount of attention from the machine learning research community in recent years due to its importance in deployed systems. Most of the previous studies focused on the detection of OOD samples in the multi-class classification task. However, OOD detection in the multi-label classification task remains an underexplored domain. In this research, we propose YolOOD - a method that utilizes concepts from the object detection domain to perform OOD detection in the multi-label classification task. Object detection models have an inherent ability to distinguish between objects of interest (in-distribution) and irrelevant objects (e.g., OOD objects) on images that contain multiple objects from different categories. These abilities allow us to convert a regular object detection model into an image classifier with inherent OOD detection capabilities with just minor changes. We compare our approach to state-of-the-art OOD detection methods and demonstrate YolOOD's ability to outperform these methods on a comprehensive suite of in-distribution and OOD benchmark datasets.
translated by 谷歌翻译
弱监督的对象检测(WSOD)是一项任务,可使用仅在图像级注释上训练的模型来检测图像中的对象。当前的最新模型受益于自我监督的实例级别的监督,但是由于弱监督不包括计数或位置信息,因此最常见的``Argmax''标签方法通常忽略了许多对象实例。为了减轻此问题,我们提出了一种新颖的多个实例标记方法,称为对象发现。我们进一步在弱监督下引入了新的对比损失,在该监督下,没有实例级信息可用于采样,称为弱监督对比损失(WSCL)。WSCL旨在通过利用一致的功能来嵌入同一类中的向量来构建对象发现的可靠相似性阈值。结果,我们在2014年和2017年MS-Coco以及Pascal VOC 2012上取得了新的最新结果,并在Pascal VOC 2007上取得了竞争成果。
translated by 谷歌翻译
标记数据通常昂贵且耗时,特别是对于诸如对象检测和实例分割之类的任务,这需要对图像的密集标签进行密集的标签。虽然几张拍摄对象检测是关于培训小说中的模型(看不见的)对象类具有很少的数据,但它仍然需要在许多标记的基础(见)类的课程上进行训练。另一方面,自我监督的方法旨在从未标记数据学习的学习表示,该数据转移到诸如物体检测的下游任务。结合几次射击和自我监督的物体检测是一个有前途的研究方向。在本调查中,我们审查并表征了几次射击和自我监督对象检测的最新方法。然后,我们给我们的主要外卖,并讨论未来的研究方向。https://gabrielhuang.github.io/fsod-survey/的项目页面
translated by 谷歌翻译
Conventional training of a deep CNN based object detector demands a large number of bounding box annotations, which may be unavailable for rare categories. In this work we develop a few-shot object detector that can learn to detect novel objects from only a few annotated examples. Our proposed model leverages fully labeled base classes and quickly adapts to novel classes, using a meta feature learner and a reweighting module within a one-stage detection architecture. The feature learner extracts meta features that are generalizable to detect novel object classes, using training data from base classes with sufficient samples. The reweighting module transforms a few support examples from the novel classes to a global vector that indicates the importance or relevance of meta features for detecting the corresponding objects. These two modules, together with a detection prediction module, are trained end-to-end based on an episodic few-shot learning scheme and a carefully designed loss function. Through extensive experiments we demonstrate that our model outperforms well-established baselines by a large margin for few-shot object detection, on multiple datasets and settings. We also present analysis on various aspects of our proposed model, aiming to provide some inspiration for future few-shot detection works.
translated by 谷歌翻译
In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality. While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object detection datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN. To facilitate future research, two implementations are made available at https://github.com/zhaoweicai/cascade-rcnn (Caffe) and https://github.com/zhaoweicai/Detectron-Cascade-RCNN (Detectron).
translated by 谷歌翻译
在真实世界的环境中,可以通过对象检测器连续遇到来自新类的对象实例。当现有的对象探测器应用于这种情况时,它们在旧课程上的性能显着恶化。据报道,一些努力解决了这个限制,所有这些限制适用于知识蒸馏的变体,以避免灾难性的遗忘。我们注意到虽然蒸馏有助于保留以前的学习,但它阻碍了对新任务的快速适应性,这是增量学习的关键要求。在这种追求中,我们提出了一种学习方法,可以学习重塑模型梯度,使得跨增量任务的信息是最佳的共享。这可通过META学习梯度预处理来确保无缝信息传输,可最大限度地减少遗忘并最大化知识传输。与现有的元学习方法相比,我们的方法是任务不可知,允许将新类的增量添加到对象检测的高容量模型中。我们在Pascal-VOC和MS Coco Datasets上定义的各种增量学习设置中评估了我们的方法,我们的方法对最先进的方法进行了好评。
translated by 谷歌翻译