本文介绍了一种基于新的条件独立性(CI)的线性和非线性,滞后和同期因因果发现的方法,从而在因果上足够的情况下。基于CI的基于CI的方法,如PC算法以及来自其他框架的常见方法遭受低召回和部分充气的误报,用于强大的自相关,这是时间序列中无处不在的挑战。小说方法PCMCI $ ^ + $,扩展PCMCI [Runge等,2019B],包括发现同期链接。 PCMCI $ ^ + $通过优化调节套件的选择甚至从自相关的益处来提高CI测试的可靠性。该方法在Oracle案例中是单独无关的且一致。广泛的数值实验表明,与其他方法相比,PCMCI $ ^ + $具有更高的邻接检测功率,尤其是同时定向召回,同时更好地控制误报。优化的调节集还会导致比PC算法更短的运行时间。 PCMCI $ ^ + $可以在许多真实世界应用方案中具有相当大的用途,其中通常时间分辨率太粗糙以解决时间延迟,并且存在强大的自相关。
translated by 谷歌翻译
重建我们观察到的现象背后的因果关系是科学所有领域的基本挑战。在复杂的系统中,通过实验发现因果关系通常是不可行的,不道德的或昂贵的。但是,计算能力的增加使我们能够处理现代科学生成的不断增长的数据,从而从观察数据中引起对因果发现问题的新兴兴趣。这项工作评估了LPCMCI算法,该算法旨在找到与多维,高度相关的时间序列兼容的生成器,而某些变量则未观察到。我们发现LPCMCI的性能要比模仿什么都不了解的随机算法要好得多,但距离最佳检测仍然很远。此外,LPCMCI在自动依赖性,然后是同时的依赖性方面表现最佳,并且在滞后依赖性方面最挣扎。该项目的源代码可在线获得。
translated by 谷歌翻译
考虑基于AI和ML的决策对这些新兴技术的安全和可接受的使用的决策的社会和道德后果至关重要。公平,特别是保证ML决定不会导致对个人或少数群体的歧视。使用因果关系,可以更好地实现和衡量可靠的公平/歧视,从而更好地实现了敏感属性(例如性别,种族,宗教等)之间的因果关系,仅仅是仅仅是关联,例如性别,种族,宗教等(例如,雇用工作,贷款授予等) )。然而,对因果关系解决公平性的最大障碍是因果模型的不可用(通常表示为因果图)。文献中现有的因果关系方法并不能解决此问题,并假设可获得因果模型。在本文中,我们没有做出这样的假设,并且我们回顾了从可观察数据中发现因果关系的主要算法。这项研究的重点是因果发现及其对公平性的影响。特别是,我们展示了不同的因果发现方法如何导致不同的因果模型,最重要的是,即使因果模型之间的轻微差异如何对公平/歧视结论产生重大影响。通过使用合成和标准公平基准数据集的经验分析来巩固这些结果。这项研究的主要目标是强调因果关系使用因果关系适当解决公平性的因果发现步骤的重要性。
translated by 谷歌翻译
在学习从观察数据中学习贝叶斯网络的图形结构是描述和帮助了解复杂应用程序中的数据生成过程的关键,而任务由于其计算复杂性而构成了相当大的挑战。代表贝叶斯网络模型的定向非循环图(DAG)通常不会从观察数据识别,并且存在各种方法来估计其等价类。在某些假设下,流行的PC算法可以通过测试条件独立(CI)一致地始终恢复正确的等价类,从边际独立关系开始,逐步扩展调节集。这里,我们提出了一种通过利用协方差与精密矩阵之间的反向关系来执行PC算法内的CI测试的新颖方案。值得注意的是,精密矩阵的元素与高斯数据的部分相关性。然后,我们的算法利用对协方差和精密矩阵的块矩阵逆转,同时对互补(或双)调节集的部分相关性进行测试。因此,双PC算法的多个CI测试首先考虑边缘和全阶CI关系并逐步地移动到中心顺序。仿真研究表明,双PC算法在运行时和恢复底层网络结构方面都优于经典PC算法。
translated by 谷歌翻译
We explore how observational and interventional causal discovery methods can be combined. A state-of-the-art observational causal discovery algorithm for time series capable of handling latent confounders and contemporaneous effects, called LPCMCI, is extended to profit from casual constraints found through randomized control trials. Numerical results show that, given perfect interventional constraints, the reconstructed structural causal models (SCMs) of the extended LPCMCI allow 84.6% of the time for the optimal prediction of the target variable. The implementation of interventional and observational causal discovery is modular, allowing causal constraints from other sources. The second part of this thesis investigates the question of regret minimizing control by simultaneously learning a causal model and planning actions through the causal model. The idea is that an agent to optimize a measured variable first learns the system's mechanics through observational causal discovery. The agent then intervenes on the most promising variable with randomized values allowing for the exploitation and generation of new interventional data. The agent then uses the interventional data to enhance the causal model further, allowing improved actions the next time. The extended LPCMCI can be favorable compared to the original LPCMCI algorithm. The numerical results show that detecting and using interventional constraints leads to reconstructed SCMs that allow 60.9% of the time for the optimal prediction of the target variable in contrast to the baseline of 53.6% when using the original LPCMCI algorithm. Furthermore, the induced average regret decreases from 1.2 when using the original LPCMCI algorithm to 1.0 when using the extended LPCMCI algorithm with interventional discovery.
translated by 谷歌翻译
贝叶斯网络是概率的图形模型,广泛用于了解高维数据的依赖关系,甚至促进因果发现。学习作为定向的非循环图(DAG)编码的底层网络结构是高度具有挑战性的,主要是由于大量可能的网络与非狭窄性约束结合。努力专注于两个前面:基于约束的方法,该方法执行条件独立测试,以排除具有贪婪或MCMC方案的DAG空间的边缘和分数和搜索方法。在这里,我们以一种新的混合方法综合这两个领域,这降低了基于约束方法的MCMC方法的复杂性。 MCMC方案中的各个步骤仅需要简单的表查找,以便可以有效地获得非常长的链。此外,该方案包括迭代过程,以校正来自条件独立测试的错误。该算法对替代方案提供了显着卓越的性能,特别是因为也可以从后部分布采样DAG,从而实现全面的贝叶斯模型为大量较大的贝叶斯网络进行平均。
translated by 谷歌翻译
We present a new algorithm for Bayesian network structure learning, called Max-Min Hill-Climbing (MMHC). The algorithm combines ideas from local learning, constraint-based, and search-and-score techniques in a principled and effective way. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. In our extensive empirical evaluation MMHC outperforms on average and in terms of various metrics several prototypical and state-of-the-art algorithms, namely the PC, Sparse Candidate, Three Phase Dependency Analysis, Optimal Reinsertion, Greedy Equivalence Search, and Greedy Search. These are the first empirical results simultaneously comparing most of the major Bayesian network algorithms against each other. MMHC offers certain theoretical advantages, specifically over the Sparse Candidate algorithm, corroborated by our experiments. MMHC and detailed results of our study are publicly available at http://www.dsl-lab.org/supplements/mmhc paper/mmhc index.html.
translated by 谷歌翻译
我们介绍了一种声音和完整的算法,称为迭代因果发现(ICD),用于在存在潜在混杂器和选择偏压的情况下恢复因果图。 ICD依赖于因果性马尔可夫和忠诚的假设,并恢复潜在因果图的等价类别。它以完整的图形开始,由单个迭代阶段组成,通过识别连接节点之间的条件独立性(CI)逐渐改进该图。任何迭代后都需要的独立性和因果关系是正确的,随时渲染ICD。基本上,我们将CI调节的大小与测试节点绑定到图表上的距离,并在连续迭代中提高此值。因此,每次迭代都改进了通过具有较小调节集的先前迭代恢复的图 - 一种更高的统计功率 - 这有助于稳定性。我们凭经验证明ICD需要较少的CI测试,并与FCI,FCI +和RFCI算法相比,学习更准确的因果图。
translated by 谷歌翻译
从观察数据中推断出因果关系很少直接,但是在高维度中,问题尤其困难。对于这些应用,因果发现算法通常需要参数限制或极端稀疏限制。我们放松这些假设,并专注于一个重要但更专业的问题,即在已知的变量子中恢复因果秩序,这些变量已知会从某些(可能很大的)混杂的协变量(即$ \ textit {Confounder Blanset} $)中降下。这在许多环境中很有用,例如,在研究具有背景信息的遗传数据的动态生物分子子系统时。在一个称为$ \ textit {混杂的毯子原理} $的结构假设下,我们认为这对于在高维度中的可拖动因果发现至关重要,我们的方法可容纳低或高稀疏性的图形,同时保持多项式时间复杂性。我们提出了一种结构学习算法,相对于所谓的$ \ textit {Lazy Oracle} $,该算法是合理且完整的。我们设计了线性和非线性系统有限样本误差控制的推理过程,并在一系列模拟和现实世界数据集上演示了我们的方法。随附的$ \ texttt {r} $ package,$ \ texttt {cbl} $可从$ \ texttt {cran} $获得。
translated by 谷歌翻译
解决了选择最佳后门调整集的问题,以解决隐藏和条件变量的图形模型中的因果效应。以前的工作已经定义了实现最小的渐近估计方差,并且在没有隐藏变量的情况下派生的最佳集。对于隐藏变量的情况,可以有设置在没有最佳集合的情况下,并且目前仅导出有限适用性的足够的图形最优标准。在本工作中,最优性的特征在于最大化某个调整信息,该信息允许导出用于存在最佳调整集的必要和足够的图形标准和构造它的定义和算法。此外,如果仅存在有效调整集并且具有比Perkovi {\'C}等所提出的调整集更高(或等于)调整信息,则最佳集是有效的。 [机器学习研究学报,18:1--62,2018]任何图表。结果转化为一类估计的渐近估计差异,其渐近方差遵循某种信息理论关系。数值实验表明,渐近结果也适用于相对较小的样本尺寸,并且最佳调整集或其最小化变体通常也会产生更好的方差,也超出该估计类。令人惊讶的是,在随机创建的设置中,超过90 \%满足最优性条件,指示在许多现实世界场景中也可以保持。代码可用作Python Package \ URL {https://github.com/jakobrunge/tigramite}的一部分。
translated by 谷歌翻译
The Extremal River Problem has emerged as a flagship problem for causal discovery in extreme values of a network. The task is to recover a river network from only extreme flow measured at a set $V$ of stations, without any information on the stations' locations. We present QTree, a new simple and efficient algorithm to solve the Extremal River Problem that performs very well compared to existing methods on hydrology data and in simulations. QTree returns a root-directed tree and achieves almost perfect recovery on the Upper Danube network data, the existing benchmark data set, as well as on new data from the Lower Colorado River network in Texas. It can handle missing data, has an automated parameter tuning procedure, and runs in time $O(n |V|^2)$, where $n$ is the number of observations and $|V|$ the number of nodes in the graph. Furthermore, we prove that the QTree estimator is consistent under a Bayesian network model for extreme values with noise. We also assess the small sample behaviour of QTree through simulations and detail the strengths and possible limitations of QTree.
translated by 谷歌翻译
本文提出了一种新的因果发现方法,即结构不可知的建模(SAM)。SAM利用条件独立性和分布不对称性,旨在从观察数据中找到潜在的因果结构。该方法基于不同玩家之间的游戏,该游戏将每个变量分布有条件地作为神经网估算,而对手则旨在区分生成的数据与原始数据。结合分布估计,稀疏性和无环限制的学习标准用于通过随机梯度下降来实施图形结构和参数的优化。SAM在合成和真实数据上进行了实验验证。
translated by 谷歌翻译
本文提出了一种新的混合贝叶斯网络学习算法,称为前部滴下山坡爬山(FEDHC),设计为与连续或分类变量一起使用。具体地,对于连续数据的情况,提出了一种对FEDHC的强大的异常值,可以由其他BN学习算法采用。此外,纸张表明,统计软件\ Texit {R}中唯一的MMHC的实现是非常昂贵的,并且提供了新的实现。通过Monte Carlo模拟测试FEDHC,表明它是计算效率的明显,并产生与MMHC和PCHC相似的贝叶斯网络或更高的准确性。最后,使用统计软件\ Textit {R},对来自经济学领域的FEDHC,PCHC和MMHC算法的应用到实际数据中的应用。
translated by 谷歌翻译
Linear structural causal models (SCMs)-- in which each observed variable is generated by a subset of the other observed variables as well as a subset of the exogenous sources-- are pervasive in causal inference and casual discovery. However, for the task of causal discovery, existing work almost exclusively focus on the submodel where each observed variable is associated with a distinct source with non-zero variance. This results in the restriction that no observed variable can deterministically depend on other observed variables or latent confounders. In this paper, we extend the results on structure learning by focusing on a subclass of linear SCMs which do not have this property, i.e., models in which observed variables can be causally affected by any subset of the sources, and are allowed to be a deterministic function of other observed variables or latent confounders. This allows for a more realistic modeling of influence or information propagation in systems. We focus on the task of causal discovery form observational data generated from a member of this subclass. We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure. To the best of our knowledge, this is the first work that gives identifiability results for causal discovery under both latent confounding and deterministic relationships. Further, we propose an algorithm for recovering the underlying causal structure when the aforementioned conditions are satisfied. We validate our theoretical results both on synthetic and real datasets.
translated by 谷歌翻译
因果学习的基本难度是通常不能根据观察数据完全识别因果模型。介入数据,即源自不同实验环境的数据,提高了可识别性。然而,改善统治性取决于每个实验中的干预措施的目标和性质。由于在实际应用实验往往是昂贵的,因此需要执行正确的干预措施,使得尽可能少。在这项工作中,我们提出了一种基于不变因果预测(ICP)的新的主动学习(即实验选择)框架(A-ICP)(Peters等,2016)。对于一般结构因果模型,我们的表征干预对所谓的稳定集的影响,由(Pfister等,2019)引入的概念。我们利用这些结果提出了用于A-ICP的几个干预选择策略,该策略快速揭示了因果图中响应变量的直接原因,同时保持ICP中固有的错误控制。经验上,我们分析了拟议的拟议政策在人口和有限政府实验中的表现。
translated by 谷歌翻译
最近,已经提出了利用预测模型在不断变化的环境方面的不变性来推断响应变量的因果父母的子集的不变性。如果环境仅影响少数基本机制,则例如不变因果预测(ICP)确定的子集可能很小,甚至是空的。我们介绍了最小不变性的概念,并提出了不变的血统搜索(IAS)。在其人群版本中,IAS输出了一个仅包含响应祖先的集合,并且是ICP输出的超集。当应用于数据时,如果不变性的基础测试具有渐近水平和功率,则相应的保证会渐近。我们开发可扩展算法并在模拟和真实数据上执行实验。
translated by 谷歌翻译
在许多学科中,在大量解释变量中推断反应变量的直接因果父母的问题具有很高的实际意义。但是,建立的方法通常至少会随着解释变量的数量而呈指数级扩展,难以扩展到非线性关系,并且很难扩展到周期性数据。受{\ em Debiased}机器学习方法的启发,我们研究了一种单Vs.-the-Rest特征选择方法,以发现响应的直接因果父母。我们提出了一种用于纯观测数据的算法,同时还提供理论保证,包括可能在周期存在下的部分非线性关系的情况。由于它仅需要对每个变量进行一个估计,因此我们的方法甚至适用于大图。与既定方法相比,我们证明了显着改善。
translated by 谷歌翻译
本地到全球学习方法在贝叶斯网络(BN)结构学习中起着重要作用。现有的本地到全局学习算法首先通过在数据集中学习每个变量的MB(马尔可夫毯子)或PC(家长和儿童)来构建DAG(Markov毯子)或PC(父母和儿童),然后在骨架中定向边缘。然而,现有的MB或PC学习方法通​​常是昂贵的昂贵昂贵,特别是具有大型BN,导致局部到全局学习算法效率低下。为了解决问题,在本文中,我们使用特征选择开发了一个有效的本地到全局学习方法。具体地,我们首先分析众所周知的最小冗余和最大相关性(MRMR)特征选择方法的基本原理,用于学习变量的PC集。基于分析,我们提出了一种高效的F2SL(基于特征选择的结构学习)方法,以局部 - 全局BN结构学习。 F2SL方法首先采用MRMR方法来学习DAG骨架,然后在骨架中的边缘。采用独立测试或进行定向边缘的分数函数,我们将F2SL方法实例化为两个新算法,F2SL-C(使用独立测试)和F2SL-S(使用得分函数)。与最先进的本地到全局BN学习算法相比,实验验证了本文中所提出的算法比比较算法更有效,提供竞争性结构学习质量。
translated by 谷歌翻译
模拟DAG模型可能表现出属性,也许无意中,使其结构识别和意外地影响结构学习算法。在这里,我们表明边缘方差往往沿着仿制性添加添加剂噪声模型的因果顺序增加。我们将Varsortable介绍为衡量衡量边际差异和因果顺序的秩序之间的协议。对于通常采样的图形和模型参数,我们表明,一些连续结构学习算法的显着性能可以通过高的Varsortable解释,并通过简单的基线方法匹配。然而,这种性能可能不会转移到真实世界的数据,其中VARS使性可能是中等或取决于测量尺度的选择。在标准化数据上,相同的算法无法识别地面真理DAG或其Markov等价类。虽然标准化在边缘方差中删除了模式,但我们表明,数据产生过程,其产生高VILS使性也留下了即使在标准化之后也可以利用不同的协方差模式。我们的调查结果挑战了独立绘制参数的通用基准的重要性。代码可在https://github.com/scriddie/varsortable获得。
translated by 谷歌翻译
In this review, we discuss approaches for learning causal structure from data, also called causal discovery. In particular, we focus on approaches for learning directed acyclic graphs (DAGs) and various generalizations which allow for some variables to be unobserved in the available data. We devote special attention to two fundamental combinatorial aspects of causal structure learning. First, we discuss the structure of the search space over causal graphs. Second, we discuss the structure of equivalence classes over causal graphs, i.e., sets of graphs which represent what can be learned from observational data alone, and how these equivalence classes can be refined by adding interventional data.
translated by 谷歌翻译