评估有丝分裂计数具有已知的高度内和帧间间变异性。已证明计算机辅助系统可降低这种可变性并减少标记时间。然而,这些系统通常高度依赖于其培训领域,并表现出对看不见的域的适用性差。在组织病理学中,这些域移位可以由各种来源产生,包括用于数字化组织学样本的不同滑动扫描系统。有丝分裂域泛化挑战的挑战集中在这种特定领域转变对有丝分裂形象检测的任务。这项工作提出了一种主要的有丝分裂形象检测算法作为挑战的基线,基于域对抗训练。在挑战的测试集上,该算法将F $ _1 $得分为0.7183。相应的网络权重和用于实现网络的代码是公开可用的。
translated by 谷歌翻译
由于形态的相似性,皮肤肿瘤的组织学切片分化为个体亚型可能具有挑战性。最近,基于深度学习的方法证明了它们在这方面支持病理学家的潜力。但是,这些监督算法中的许多都需要大量的注释数据才能进行稳健开发。我们提供了一个公开可用的数据集,该数据集是七个不同的犬皮肤肿瘤的350张全滑图像,其中有13种组织学类别的12,424个多边形注释,包括7种皮肤肿瘤亚型。在评估者间实验中,我们显示了提供的标签的高稠度,尤其是对于肿瘤注释。我们通过训练深层神经网络来进一步验证数据集,以完成组织分割和肿瘤亚型分类的任务。我们的肿瘤尤其是0.7047的类平均Jaccard系数为0.7047,尤其是0.9044。对于分类,我们达到了0.9857的幻灯片级准确性。由于犬皮肤肿瘤对人肿瘤具有各种组织学同源性,因此该数据集的附加值不限于兽医病理学,而是扩展到更一般的应用领域。
translated by 谷歌翻译
在初级诊断的日常诊断中采用卷积神经网络(CNN)不仅需要接近完美的精度,而且还需要对数据采集变化和透明度的足够概括。现有的CNN模型充当黑匣子,不确保医生认为模型使用重要的诊断功能。本文以成功现有的技术(例如多任务学习,域对抗性培训和基于概念的解释性)为基础,该论文解决了在培训目标中引入诊断因素的挑战。在这里,我们表明,通过学习端到端学习多任务和对抗性损失的基于不确定性的加权组合,鼓励将重点放在病理学特征上,例如核的密度和多态性,例如。大小和外观的变化,同时丢弃诸如染色差异之类的误导性特征。我们在乳腺淋巴结组织上的结果显示,在肿瘤组织的检测中的概括显着改善,最佳平均AUC为0.89(0.01),针对基线AUC 0.86(0.005)。通过应用线性探测中间表示的可解释性技术,我们还证明了可解释的病理特征(例如核密度)是通过提出的CNN结构来学习的,从而证实了该模型的透明度的提高。该结果是构建可解释的多任务体系结构的起点,这些架构对数据异质性具有鲁棒性。我们的代码可在https://bit.ly/356yq2u上找到。
translated by 谷歌翻译
从不同扫描仪/部位的有丝分裂数字的检测仍然是研究的重要主题,这是由于其潜力协助临床医生进行肿瘤分级。有丝分裂结构域的概括(MIDOG)2022挑战旨在测试从多种扫描仪和该任务的多种扫描仪和组织类型中看不见数据的检测模型的鲁棒性。我们提供了TIA中心团队采用的方法来应对这一挑战的简短摘要。我们的方法基于混合检测模型,在该模型中,在该模型中进行了有丝分裂候选者,然后被深度学习分类器精炼。在训练图像上的交叉验证在初步测试集上达到了0.816和0.784的F1得分,这证明了我们模型可以从新扫描仪中看不见的数据的普遍性。
translated by 谷歌翻译
有效的有丝分裂定位是决定肿瘤预后和成绩的关键先驱任务。由于固有的域偏见,通过深度学习的图像分析通过深度学习图像分析的自动化检测通常会失败。本文提出了一个用于有丝分裂检测的域均质器,该域均质器试图通过输入图像的对抗重建来减轻组织学图像的领域差异。拟议的均质器基于U-NET架构,可以有效地减少组织学成像数据常见的域差异。我们通过观察预处理图像之间的域差异来证明我们的域均质器的有效性。使用此均匀剂,以及随后的视网膜网络检测器,我们能够以检测到的有丝分裂数字的平均精度来超越2021 MIDOG挑战的基准。
translated by 谷歌翻译
最近,大型高质量的公共数据集导致了卷积神经网络的发展,这些神经网络可以在专家病理学家水平上检测乳腺癌的淋巴结转移。许多癌症,无论起源地点如何,都可以转移到淋巴结。但是,收集和注释每种癌症类型的高量,高质量数据集都是具有挑战性的。在本文中,我们研究了如何在多任务设置中最有效地利用现有的高质量数据集,以实现紧密相关的任务。具体而言,我们将探索不同的训练和领域适应策略,包括预防灾难性遗忘,用于结肠和头颈癌症转移淋巴结中的灾难性遗忘。我们的结果表明,两项癌症转移检测任务的最新性能。此外,我们显示了从一种癌症类型到另一种癌症的反复适应以获得多任务转移检测网络的有效性。最后,我们表明,利用现有的高质量数据集可以显着提高新目标任务的性能,并且可以使用正则化有效地减轻灾难性遗忘。
translated by 谷歌翻译
乳腺癌是女性最常见的恶性肿瘤,每年负责超过50万人死亡。因此,早期和准确的诊断至关重要。人类专业知识是诊断和正确分类乳腺癌并定义适当的治疗,这取决于评价不同生物标志物如跨膜蛋白受体HER2的表达。该评估需要几个步骤,包括免疫组织化学或原位杂交等特殊技术,以评估HER2状态。通过降低诊断中的步骤和人类偏差的次数的目标,赫洛挑战是组织的,作为第16届欧洲数字病理大会的并行事件,旨在自动化仅基于苏木精和曙红染色的HER2地位的评估侵袭性乳腺癌的组织样本。评估HER2状态的方法是在全球21个团队中提出的,并通过一些提议的方法实现了潜在的观点,以推进最先进的。
translated by 谷歌翻译
Making histopathology image classifiers robust to a wide range of real-world variability is a challenging task. Here, we describe a candidate deep learning solution for the Mitosis Domain Generalization Challenge 2022 (MIDOG) to address the problem of generalization for mitosis detection in images of hematoxylin-eosin-stained histology slides under high variability (scanner, tissue type and species variability). Our approach consists in training a rotation-invariant deep learning model using aggressive data augmentation with a training set enriched with hard negative examples and automatically selected negative examples from the unlabeled part of the challenge dataset. To optimize the performance of our models, we investigated a hard negative mining regime search procedure that lead us to train our best model using a subset of image patches representing 19.6% of our training partition of the challenge dataset. Our candidate model ensemble achieved a F1-score of .697 on the final test set after automated evaluation on the challenge platform, achieving the third best overall score in the MIDOG 2022 Challenge.
translated by 谷歌翻译
语义图像分割是手术中的背景知识和自治机器人的重要前提。本领域的状态专注于在微创手术期间获得的传统RGB视频数据,但基于光谱成像数据的全景语义分割并在开放手术期间获得几乎没有注意到日期。为了解决文献中的这种差距,我们正在研究基于在开放手术环境中获得的猪的高光谱成像(HSI)数据的以下研究问题:(1)基于神经网络的HSI数据的充分表示是完全自动化的器官分割,尤其是关于数据的空间粒度(像素与Superpixels与Patches与完整图像)的空间粒度? (2)在执行语义器官分割时,是否有利用HSI数据使用HSI数据,即RGB数据和处理的HSI数据(例如氧合等组织参数)?根据基于20猪的506个HSI图像的全面验证研究,共注释了19个类,基于深度的学习的分割性能 - 贯穿模态 - 与输入数据的空间上下文一致。未处理的HSI数据提供优于RGB数据或来自摄像机提供商的处理数据,其中优势随着输入到神经网络的输入的尺寸而增加。最大性能(应用于整个图像的HSI)产生了0.89(标准偏差(SD)0.04)的平均骰子相似度系数(DSC),其在帧间间变异性(DSC为0.89(SD 0.07)的范围内。我们得出结论,HSI可以成为全自动手术场景理解的强大的图像模型,其具有传统成像的许多优点,包括恢复额外功能组织信息的能力。
translated by 谷歌翻译
在过去的几年中,用于计算机视觉的深度学习技术的快速发展极大地促进了医学图像细分的性能(Mediseg)。但是,最近的梅赛格出版物通常集中于主要贡献的演示(例如,网络体系结构,培训策略和损失功能),同时不知不觉地忽略了一些边缘实施细节(也称为“技巧”),导致了潜在的问题,导致了潜在的问题。不公平的实验结果比较。在本文中,我们为不同的模型实施阶段(即,预培训模型,数据预处理,数据增强,模型实施,模型推断和结果后处理)收集了一系列Mediseg技巧,并在实验中探索了有效性这些技巧在一致的基线模型上。与仅关注分割模型的优点和限制分析的纸驱动调查相比,我们的工作提供了大量的可靠实验,并且在技术上更可操作。通过对代表性2D和3D医疗图像数据集的广泛实验结果,我们明确阐明了这些技巧的效果。此外,根据调查的技巧,我们还开源了一个强大的梅德西格存储库,其每个组件都具有插件的优势。我们认为,这项里程碑的工作不仅完成了对最先进的Mediseg方法的全面和互补的调查,而且还提供了解决未来医学图像处理挑战的实用指南,包括但不限于小型数据集学习,课程不平衡学习,多模式学习和领域适应。该代码已在以下网址发布:https://github.com/hust-linyi/mediseg
translated by 谷歌翻译
组织病理学分析是对癌前病变诊断的本金标准。从数字图像自动组织病理学分类的目标需要监督培训,这需要大量的专家注释,这可能是昂贵且耗时的收集。同时,精确分类从全幻灯片裁剪的图像斑块对于基于标准滑动窗口的组织病理学幻灯片分类方法是必不可少的。为了减轻这些问题,我们提出了一个精心设计的条件GaN模型,即hostogan,用于在类标签上合成现实组织病理学图像补丁。我们还研究了一种新颖的合成增强框架,可选择地添加由我们提出的HADOGAN生成的新的合成图像补丁,而不是直接扩展与合成图像的训练集。通过基于其指定标签的置信度和实际标记图像的特征相似性选择合成图像,我们的框架为合成增强提供了质量保证。我们的模型在两个数据集上进行评估:具有有限注释的宫颈组织病理学图像数据集,以及具有转移性癌症的淋巴结组织病理学图像的另一个数据集。在这里,我们表明利用具有选择性增强的组织产生的图像导致对宫颈组织病理学和转移性癌症数据集分别的分类性能(分别为6.7%和2.8%)的显着和一致性。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
组织病理学图像的出现取决于组织类型,染色和数字化过程。这些因素因来源而异,是域转移问题的潜在原因。由于这个问题,尽管深度学习模型在计算病理学中取得了巨大的成功,但在特定领域训练的模型当我们将其应用于另一个领域时,仍可能会表现出色。为了克服这一点,我们提出了一种称为PatchShuffling的新扩展,并为预训练的深度学习模型而被称为Impash的新型自我监视的对比学习框架。使用这些,我们获得了一个RESNET50编码器,该编码器可以提取对域移位抗性的图像表示。我们通过使用其他域普通化技术来比较了我们的派生表示形式,它们通过将它们用于结直肠组织图像的跨域分类。我们表明,所提出的方法优于其他传统的组织学领域适应和最先进的自我监督学习方法。代码可在以下网址获得:https://github.com/trinhvg/impash。
translated by 谷歌翻译
部署在野外的机器学习系统通常在源分布上培训,但部署在不同的目标分布上。未标记的数据可以是用于缓解这些分布班次的强大的利用点,因为它通常比标记数据更具可用。然而,未标记数据的现有分配转换基准不反映现实世界应用中出现的方案的广度。在这项工作中,我们介绍了Wilds 2.0更新,该更新在分发转移的野外基准中扩展了10个数据集中的8个,以包括将在部署中逼真获得的策划未标记数据。为了保持一致性,标记的培训,验证和测试集以及评估度量与原始野外基准中的标记与评估度量完全相同。这些数据集涵盖了广泛的应用程序(从组织学到野生动物保护),任务(分类,回归和检测)和方式(照片,卫星图像,显微镜载玻片,文本,分子图)。我们系统地基准测试最先进的方法,可以利用未标记的数据,包括域不变,自我培训和自我监督方法,并表明他们在野外的成功2.0是有限的。为了方便方法开发和评估,我们提供了一个自动化数据加载的开源包,并包含本文中使用的所有模型架构和方法。代码和排行榜可在https://wilds.stanford.edu获得。
translated by 谷歌翻译
已知神经网络容易受到对抗性攻击的影响 - 轻微但精心构建的输入扰动,这会造成巨大损害网络的性能。已经提出了许多防御方法来通过培训对抗对抗扰动的投入来改善深网络的稳健性。然而,这些模型通常仍然容易受到在训练期间没有看到的新类型的攻击,甚至在以前看到的攻击中稍微强大。在这项工作中,我们提出了一种新的对抗性稳健性的方法,这在域适应领域的见解中建立了洞察力。我们的方法称为对抗性特征脱敏(AFD),目的是学习功能,这些特征是不变的对输入的对抗扰动。这是通过游戏实现的,我们学习了预测和鲁棒(对对抗性攻击不敏感)的特征,即不能用于区分自然和对抗数据。若干基准测试的经验结果证明了提出的方法对广泛的攻击类型和攻击优势的有效性。我们的代码可在https://github.com/bashivanlab/afd获得。
translated by 谷歌翻译
X-ray imaging technology has been used for decades in clinical tasks to reveal the internal condition of different organs, and in recent years, it has become more common in other areas such as industry, security, and geography. The recent development of computer vision and machine learning techniques has also made it easier to automatically process X-ray images and several machine learning-based object (anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image analysis. Due to the high potential of deep learning in related image processing applications, it has been used in most of the studies. This survey reviews the recent research on using computer vision and machine learning for X-ray analysis in industrial production and security applications and covers the applications, techniques, evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets. We also highlight some drawbacks in the published research and give recommendations for future research in computer vision-based X-ray analysis.
translated by 谷歌翻译
Computer-aided systems in histopathology are often challenged by various sources of domain shift that impact the performance of these algorithms considerably. We investigated the potential of using self-supervised pre-training to overcome scanner-induced domain shifts for the downstream task of tumor segmentation. For this, we present the Barlow Triplets to learn scanner-invariant representations from a multi-scanner dataset with local image correspondences. We show that self-supervised pre-training successfully aligned different scanner representations, which, interestingly only results in a limited benefit for our downstream task. We thereby provide insights into the influence of scanner characteristics for downstream applications and contribute to a better understanding of why established self-supervised methods have not yet shown the same success on histopathology data as they have for natural images.
translated by 谷歌翻译
这里介绍了人工智能研究所(IARAI)组织的2022年Landslide4sense(L4S)竞赛的科学结果。竞争的目的是根据全球收集的卫星图像的大规模多个来源自动检测滑坡。 2022 L4S旨在促进有关使用卫星图像的语义分割任务的深度学习模型(DL)模型最新发展的跨学科研究。在过去的几年中,由于卷积神经网络(CNN)的发展,基于DL的模型已经达到了对图像解释的期望。本文的主要目的是介绍本次比赛中介绍的细节和表现最佳的算法。获胜的解决方案详细介绍了Swin Transformer,Segformer和U-NET等最先进的模型。还考虑了先进的机器学习技术和诸如硬采矿,自我培训和混合数据增强之类的策略。此外,我们描述了L4S基准数据集,以促进进一步的比较,并在线报告准确性评估的结果。可以在\ textIt {未来开发排行榜上访问数据,以供将来评估,\ url {https://www.iarai.ac.ac.at/landslide4sense/challenge/},并邀请研究人员提交更多预测结果,评估准确性在他们的方法中,将它们与其他用户的方法进行比较,理想情况下,改善了本文报告的滑坡检测结果。
translated by 谷歌翻译
肿瘤浸润淋巴细胞(TIL)的定量已被证明是乳腺癌患者预后的独立预测因子。通常,病理学家对含有tils的基质区域的比例进行估计,以获得TILS评分。乳腺癌(Tiger)挑战中肿瘤浸润淋巴细胞旨在评估计算机生成的TILS评分的预后意义,以预测作为COX比例风险模型的一部分的存活率。在这一挑战中,作为Tiager团队,我们已经开发了一种算法,以将肿瘤与基质与基质进行第一部分,然后将肿瘤散装区域用于TILS检测。最后,我们使用这些输出来生成每种情况的TILS分数。在初步测试中,我们的方法达到了肿瘤 - 细胞瘤的加权骰子评分为0.791,而淋巴细胞检测的FROC得分为0.572。为了预测生存,我们的模型达到了0.719的C索引。这些结果在老虎挑战的初步测试排行榜中获得了第一名。
translated by 谷歌翻译
机器学习和深度学习方法对医学的计算机辅助预测成为必需的,在乳房X光检查领域也具有越来越多的应用。通常,这些算法训练,针对特定任务,例如,病变的分类或乳房X乳线图的病理学状态的预测。为了获得患者的综合视图,随后整合或组合所有针对同一任务培训的模型。在这项工作中,我们提出了一种管道方法,我们首先培训一组个人,任务特定的模型,随后调查其融合,与标准模型合并策略相反。我们使用混合患者模型的深度学习模型融合模型预测和高级功能,以在患者水平上构建更强的预测因子。为此,我们提出了一种多分支深度学习模型,其跨不同任务和乳房X光检查有效地融合了功能,以获得全面的患者级预测。我们在公共乳房X线摄影数据,即DDSM及其策划版本CBIS-DDSM上培训并评估我们的全部管道,并报告AUC评分为0.962,以预测任何病变和0.791的存在,以预测患者水平对恶性病变的存在。总体而言,与标准模型合并相比,我们的融合方法将显着提高AUC得分高达0.04。此外,通过提供与放射功能相关的特定于任务的模型结果,提供了与放射性特征相关的任务特定模型结果,我们的管道旨在密切支持放射科学家的阅读工作流程。
translated by 谷歌翻译