We aim for image-based novelty detection. Despite considerable progress, existing models either fail or face a dramatic drop under the so-called "near-distribution" setting, where the differences between normal and anomalous samples are subtle. We first demonstrate existing methods experience up to 20% decrease in performance in the near-distribution setting. Next, we propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data. Our model is then fine-tuned to distinguish such data from the normal samples. We provide a quantitative as well as qualitative evaluation of this strategy, and compare the results with a variety of GAN-based models. Effectiveness of our method for both the near-distribution and standard novelty detection is assessed through extensive experiments on datasets in diverse applications such as medical images, object classification, and quality control. This reveals that our method considerably improves over existing models, and consistently decreases the gap between the near-distribution and standard novelty detection performance. The code repository is available at https://github.com/rohban-lab/FITYMI.
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
异常检测是一种既定的研究区,寻求识别出预定分布外的样本。异常检测管道由两个主要阶段组成:(1)特征提取和(2)正常评分分配。最近的论文使用预先训练的网络进行特征提取,实现最先进的结果。然而,使用预先训练的网络没有完全利用火车时间可用的正常样本。本文建议通过使用教师学生培训利用此信息。在我们的环境中,佩带的教师网络用于训练正常训练样本上的学生网络。由于学生网络仅在正常样本上培训,因此预计将偏离异常情况下的教师网络。这种差异可以用作预先训练的特征向量的互补表示。我们的方法 - 变换 - 利用预先训练的视觉变压器(VIV)来提取两个特征向量:预先接受的(不可知论者)功能和教师 - 学生(微调)功能。我们报告最先进的AUROC导致共同的单向设置,其中一个类被认为是正常的,其余的被认为是异常的,并且多模式设置,其中所有类别但是一个被认为是正常的,只有一个类被认为是异常的。代码可在https://github.com/matancohen1/transformaly获得。
translated by 谷歌翻译
分布(OOD)检测对于确保机器学习系统的可靠性和安全性至关重要。例如,在自动驾驶中,我们希望驾驶系统在发现在训练时间中从未见过的异常​​场景或对象时,发出警报并将控件移交给人类,并且无法做出安全的决定。该术语《 OOD检测》于2017年首次出现,此后引起了研究界的越来越多的关注,从而导致了大量开发的方法,从基于分类到基于密度到基于距离的方法。同时,其他几个问题,包括异常检测(AD),新颖性检测(ND),开放式识别(OSR)和离群检测(OD)(OD),在动机和方法方面与OOD检测密切相关。尽管有共同的目标,但这些主题是孤立发展的,它们在定义和问题设定方面的细微差异通常会使读者和从业者感到困惑。在这项调查中,我们首先提出一个称为广义OOD检测的统一框架,该框架涵盖了上述五个问题,即AD,ND,OSR,OOD检测和OD。在我们的框架下,这五个问题可以看作是特殊情况或子任务,并且更容易区分。然后,我们通过总结了他们最近的技术发展来审查这五个领域中的每一个,特别关注OOD检测方法。我们以公开挑战和潜在的研究方向结束了这项调查。
translated by 谷歌翻译
异常检测旨在识别来自正常数据分布的异常情况。该领域已经取得了许多进展,包括创新使用无监督的对比学习。然而,现有方法通常假设清洁训练数据,并且当数据包含未知异常时受限。本文介绍了一种新型半监督异常检测方法,统一了与无监督的对比学习的能源的模型的概念。 ELSA通过基于新能量函数的精心设计的微调步骤灌输对任何数据污染的鲁棒性,这些步骤迫使正常数据分为原型的类别。多种污染方案的实验表明,所提出的模型实现了SOTA性能。广泛的分析还验证了每个组件在所提出的模型中的贡献。除了实验之外,我们还提供了一种理论解释,对何对象学习独自无法检测到数据污染下的异常。
translated by 谷歌翻译
异常检测方法识别偏离数据集的正常行为的样本。它通常用于训练集,其中包含来自多个标记类或单个未标记的类的普通数据。当前方法面对培训数据时争取多个类但没有标签。在这项工作中,我们首先发现自我监督的图像聚类方法学习的分类器为未标记的多级数据集上的异常检测提供了强大的基线。也许令人惊讶的是,我们发现初始化具有预先训练功能的聚类方法并不能改善其自我监督的对应物。这是由于灾难性遗忘的现象。相反,我们建议了两级方法。我们使用自我监督方法群集图像并为每个图像获取群集标签。我们使用群集标签作为“伪监督”,用于分销(OOD)方法。具体而言,我们通过群集标签对图像进行分类的任务进行预训练功能。我们提供了我们对方法的广泛分析,并展示了我们两级方法的必要性。我们评估符合最先进的自我监督和预用方法,并表现出卓越的性能。
translated by 谷歌翻译
深度异常检测已被证明是几个领域的有效和强大的方法。自我监督学习的引入极大地帮助了许多方法,包括异常检测,其中使用简单的几何变换识别任务。然而,由于它们缺乏更精细的特征,因此这些方法在细粒度问题上表现不佳,并且通常高度依赖于异常类型。在本文中,我们探讨了使用借口任务的自我监督异常检测的每个步骤。首先,我们介绍了专注于不同视觉线索的新型鉴别和生成任务。一部分拼图拼图任务侧重于结构提示,而在每个件上使用色调旋转识别进行比色法,并且执行部分重新染色任务。为了使重新着色任务更关注对象而不是在后台上关注,我们建议包括图像边界的上下文颜色信息。然后,我们介绍了一个新的分配检测功能,并与其他分配检测方法相比,突出了其更好的稳定性。随之而来,我们还试验不同的分数融合功能。最后,我们在具有经典对象识别的对象异常组成的综合异常检测协议上评估我们的方法,用细粒度分类和面部反欺骗数据集的局部分类和局部异常的样式异常。我们的模型可以更准确地学习使用这些自我监督任务的高度辨别功能。它优于最先进的最先进的相对误差改善对象异常,40%的面对反欺骗问题。
translated by 谷歌翻译
检测与培训数据偏离的测试数据是安全和健壮的机器学习的核心问题。通过生成模型学到的可能性,例如,通过标准对数似然训练的归一流流量,作为异常得分的表现不佳。我们建议使用未标记的辅助数据集和概率异常得分进行异常检测。我们使用在辅助数据集上训练的自我监督功能提取器,并通过最大程度地提高分布数据的可能性并最大程度地减少辅助数据集上的可能性来训练提取功能的正常化流程。我们表明,这等同于学习分布和辅助特征密度之间的归一化正差。我们在基准数据集上进行实验,并显示出与可能性,似然比方法和最新异常检测方法相比的强大改进。
translated by 谷歌翻译
在图像分类中,在检测分布(OOD)数据时发生了许多发展。但是,大多数OOD检测方法是在一组标准数据集上评估的,该数据集与培训数据任意不同。没有明确的定义``好的''ood数据集。此外,最先进的OOD检测方法已经在这些标准基准上取得了几乎完美的结果。在本文中,我们定义了2类OOD数据使用与分布(ID)数据的感知/视觉和语义相似性的微妙概念。我们将附近的OOD样本定义为感知上相似但语义上与ID样本的不同,并将样本转移为视觉上不同但在语义上与ID相似的点数据。然后,我们提出了一个基于GAN的框架,用于从这两个类别中生成OOD样品,给定一个ID数据集。通过有关MNIST,CIFAR-10/100和Imagenet的广泛实验,我们表明A)在常规基准上表现出色的ART OOD检测方法对我们提出的基准测试的稳健性明显较小。 N基准测试,反之亦然,因此表明甚至可能不需要单独的OOD集来可靠地评估OOD检测中的性能。
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
由于缺乏标签信息,异常检测是机器学习中的基本但具有挑战性的问题。在这项工作中,我们提出了一种新颖而强大的框架,称为SLA $ ^ 2 $ P,用于无监督的异常检测。在从原始数据中提取代表性嵌入后,我们将随机投影应用于特征,并将不同投影转换的特征视为属于不同的伪类。然后,我们在这些转换功能上培训一个分类器网络,以执行自我监督的学习。接下来,我们向变换特征添加对冲扰动,以减少预测标签的软MAX分数,并基于这些扰动特征对分类器的预测不确定性来降低预测标签和设计异常分数。我们的动机是,由于相对较小的数量和分散的异常模式,1)伪标签分类器的培训更集中学习正常数据的语义信息而不是异常数据; 2)正常数据的转换特征比异常的扰动更强大。因此,异常的扰动转化的特征不能良好分类,因此具有比正常样本的异常分数低。在图像,文本和固有的表格基准数据集上进行了广泛的实验,并表明SLA $ ^ 2 $ p实现了最先进的导致无监督的异常检测任务一致。
translated by 谷歌翻译
Deep anomaly detection methods learn representations that separate between normal and anomalous images. Although self-supervised representation learning is commonly used, small dataset sizes limit its effectiveness. It was previously shown that utilizing external, generic datasets (e.g. ImageNet classification) can significantly improve anomaly detection performance. One approach is outlier exposure, which fails when the external datasets do not resemble the anomalies. We take the approach of transferring representations pre-trained on external datasets for anomaly detection. Anomaly detection performance can be significantly improved by fine-tuning the pre-trained representations on the normal training images. In this paper, we first demonstrate and analyze that contrastive learning, the most popular self-supervised learning paradigm cannot be naively applied to pre-trained features. The reason is that pre-trained feature initialization causes poor conditioning for standard contrastive objectives, resulting in bad optimization dynamics. Based on our analysis, we provide a modified contrastive objective, the Mean-Shifted Contrastive Loss. Our method is highly effective and achieves a new state-of-the-art anomaly detection performance including $98.6\%$ ROC-AUC on the CIFAR-10 dataset.
translated by 谷歌翻译
图像分类中的严重问题是培训的模型可能对输入数据表现良好,该输入数据源自与用于模型培训的数据相同的分布,但对于分销超出(OOD)样本而言更加差。在真实的安全关键应用中,特别是如果新的数据点是ood的新数据点,重要的是要注意。迄今为止,通常使用置信分数,基于自动编码器的重建或对比学习来解决OOD检测。但是,尚未探索全局图像上下文以区分在分布和OOD样本之间的非局部对象。本文提出了一种名为OOODFORMER的首次检测架构,该架构利用变压器的上下文化功能。作为主要特征提取器的跨\ --former允许我们利用对象概念及其区分属性以及通过可视注意的共同发生。使用上下文化的嵌入,我们使用阶级条件潜伏空间相似性和网络置信度分数展示了OOD检测。我们的方法显示了各种数据集的完全普遍性。我们在CiFar-10 / -100和Imagenet30上取得了新的最先进的结果。
translated by 谷歌翻译
我们介绍了几个新的数据集即想象的A / O和Imagenet-R以及合成环境和测试套件,我们称为CAOS。 Imagenet-A / O允许研究人员专注于想象成剩余的盲点。由于追踪稳健的表示,以特殊创建了ImageNet-R,因为表示不再简单地自然,而是包括艺术和其他演绎。 Caos Suite由Carla Simulator构建,允许包含异常物体,可以创建可重复的合成环境和用于测试稳健性的场景。所有数据集都是为测试鲁棒性和衡量鲁棒性的衡量进展而创建的。数据集已用于各种其他作品中,以衡量其具有鲁棒性的自身进步,并允许切向进展,这些进展不会完全关注自然准确性。鉴于这些数据集,我们创建了几种旨在推进鲁棒性研究的新方法。我们以最大Logit的形式和典型程度的形式构建简单的基线,并以深度的形式创建新的数据增强方法,从而提高上述基准。最大Logit考虑Logit值而不是SoftMax操作后的值,而微小的变化会产生明显的改进。典型程分将输出分布与类的后部分布进行比较。我们表明,除了分段任务之外,这将提高对基线的性能。猜测可能在像素级别,像素的语义信息比类级信息的语义信息不太有意义。最后,新的Deepaulment的新增强技术利用神经网络在彻底不同于先前使用的传统几何和相机的转换的图像上创建增强。
translated by 谷歌翻译
本文提出了一个新颖的分布(OOD)检测框架,名为MoodCat用于图像分类器。MoodCat掩盖了输入图像的随机部分,并使用生成模型将蒙版图像合成为在分类结果条件下的新图像中。然后,它计算原始图像与合成图像之间的语义差异。与现有的解决方案相比,MoodCat自然会使用拟议的面具和条件合成策略来学习分布数据的语义信息,这对于识别OOD至关重要。实验结果表明,MoodCat的表现优于最先进的OOD检测解决方案。
translated by 谷歌翻译
We consider the problem of anomaly detection in images, and present a new detection technique. Given a sample of images, all known to belong to a "normal" class (e.g., dogs), we show how to train a deep neural model that can detect out-of-distribution images (i.e., non-dog objects). The main idea behind our scheme is to train a multi-class model to discriminate between dozens of geometric transformations applied on all the given images. The auxiliary expertise learned by the model generates feature detectors that effectively identify, at test time, anomalous images based on the softmax activation statistics of the model when applied on transformed images. We present extensive experiments using the proposed detector, which indicate that our technique consistently improves all known algorithms by a wide margin.1 Unless otherwise mentioned, the use of the adjective "normal" is unrelated to the Gaussian distribution.32nd Conference on Neural Information Processing Systems (NIPS 2018),
translated by 谷歌翻译
我们表明,在AutoEncoders(AE)的潜在空间中使用最近的邻居显着提高了单一和多级上下文中半监督新颖性检测的性能。通过学习来检测新奇的方法,以区分非新颖培训类和所有其他看不见的课程。我们的方法利用了最近邻居的重建和给定输入的潜在表示的潜在邻居的结合。我们证明了我们最近的潜在邻居(NLN)算法是内存和时间效率,不需要大量的数据增强,也不依赖于预先训练的网络。此外,我们表明NLN算法很容易应用于多个数据集而无需修改。此外,所提出的算法对于AutoEncoder架构和重建错误方法是不可知的。我们通过使用重建,剩余或具有一致损耗,验证了多个不同的自动码架构,如诸如香草,对抗和变形自身额度的各种标准数据集的方法。结果表明,NLN算法在多级案例的接收器操作特性(AUROC)曲线性能下授予面积增加17%,为单级新颖性检测8%。
translated by 谷歌翻译
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small-and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
translated by 谷歌翻译
分布(OOD)检测是在开放世界中部署机器学习模型的关键任务。基于距离的方法已经证明了有望,如果测试样品离分布(ID)数据相对遥远,则将测试样品视为OOD。但是,先前的方法对基础特征空间施加了强有力的分布假设,这可能并不总是存在。在本文中,我们探讨了非参数最近邻居距离的疗效,以检测OOD,这在文献中很大程度上被忽略了。与先前的工作不同,我们的方法不会施加任何分布假设,因此提供了更强的灵活性和一般性。我们证明了在几个基准测试中基于邻元的OOD检测的有效性,并建立了卓越的性能。在对Imagenet-1K训练的同一模型下,我们的方法将假阳性率(FPR@tpr95)降低了24.77%,与强大的基线SSD+相比,使用参数方法Mahalanobis在检测中。可用代码:https://github.com/deeplearning-wisc/knn-ood。
translated by 谷歌翻译
尽管图像分类方法取得了进步,但检测不属于培训类的样本仍然是一个具有挑战性的问题。最近,对这个主题引起了人们的兴趣,这被称为开放式识别(OSR)。在OSR中,目标是同时实现分类和检测到分布(OOD)样本。已经提出了一些想法,以通过复杂的技术进一步推动经验结果。我们认为,这种并发症确实不是必需的。为此,我们已经证明,作为OSR的最简单基线,最大的软可能性(MSP)应用于视觉变压器(VIT)作为基本分类器,该基础分类器经过非oEOD增强训练,可以超出许多最近的方法。非OOC增强是不会改变数据分布的数据。我们的结果优于CIFAR-10数据集中的最先进,也比SVHN和MNIST中的大多数当前方法更好。我们表明,训练增强对OSR任务中VIT的性能有重大影响,尽管它们应在增强样品中产生显着的多样性,但生成的样品OOD-NENS必须保持限制。
translated by 谷歌翻译