如何从每个轨迹数据中提取尽可能多的学习信号是强化学习(RL)中的关键问题,其中样本效率低下对实际应用构成了严重挑战。最近的作品表明,使用表现力的政策函数近似器和对未来轨迹信息的调理 - 例如在决策变压器(DT)中重播或退回的未来状态 - 可以高效地学习多任务策略,在哪里有时在线RL被离线行为克隆完全替换,例如序列建模。我们展示所有这些方法都正在进行后视信息匹配(他) - 培训策略,可以输出与未来状态信息的一些统计数据匹配的轨迹的其余轨迹。我们呈现出用于解决任何问题的广义决策变压器(GDT),并显示特征功能的选择和抗因果聚合器的不同选择性不仅恢复DT为特殊情况,而且还导致新的分类DT(CDT)和BI - 用于匹配未来不同统计数据的DT(BDT)。为了评估CDT和BDT,我们将离线多任务状态边缘匹配(SMM)和仿制学习(IL)定义为两个普遍的他问题,提出了Wasserstein距离损失作为两者的度量,并对Mujoco连续控制进行了经验研究它们基准。 CDT简单地取代了DT中的反因果衬合的反因果求和,使得第一种有效的离线多任务SMM算法概括为看不见甚至合成的多模态状态特征分布。使用反因果第二变压器作为聚合器的BDT可以学习模拟未来的任何统计数据,并在离线多任务IL中占DT变体。我们的广义配方来自他和GDT大大扩大了强大的序列建模架构在现代RL中的作用。
translated by 谷歌翻译
Transformer, originally devised for natural language processing, has also attested significant success in computer vision. Thanks to its super expressive power, researchers are investigating ways to deploy transformers to reinforcement learning (RL) and the transformer-based models have manifested their potential in representative RL benchmarks. In this paper, we collect and dissect recent advances on transforming RL by transformer (transformer-based RL or TRL), in order to explore its development trajectory and future trend. We group existing developments in two categories: architecture enhancement and trajectory optimization, and examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving. For architecture enhancement, these methods consider how to apply the powerful transformer structure to RL problems under the traditional RL framework, which model agents and environments much more precisely than deep RL methods, but they are still limited by the inherent defects of traditional RL algorithms, such as bootstrapping and "deadly triad". For trajectory optimization, these methods treat RL problems as sequence modeling and train a joint state-action model over entire trajectories under the behavior cloning framework, which are able to extract policies from static datasets and fully use the long-sequence modeling capability of the transformer. Given these advancements, extensions and challenges in TRL are reviewed and proposals about future direction are discussed. We hope that this survey can provide a detailed introduction to TRL and motivate future research in this rapidly developing field.
translated by 谷歌翻译
我们研究离线元加强学习,这是一种实用的强化学习范式,从离线数据中学习以适应新任务。离线数据的分布由行为政策和任务共同确定。现有的离线元强化学习算法无法区分这些因素,从而使任务表示不稳定,不稳定行为策略。为了解决这个问题,我们为任务表示形式提出了一个对比度学习框架,这些框架对培训和测试中行为策略的分布不匹配是可靠的。我们设计了双层编码器结构,使用相互信息最大化来形式化任务表示学习,得出对比度学习目标,并引入了几种方法以近似负面对的真实分布。对各种离线元强化学习基准的实验证明了我们方法比先前方法的优势,尤其是在对分布外行为策略的概括方面。该代码可在https://github.com/pku-ai-ged/corro中找到。
translated by 谷歌翻译
元强化学习(RL)方法可以使用比标准RL少的数据级的元培训策略,但元培训本身既昂贵又耗时。如果我们可以在离线数据上进行元训练,那么我们可以重复使用相同的静态数据集,该数据集将一次标记为不同任务的奖励,以在元测试时间适应各种新任务的元训练策略。尽管此功能将使Meta-RL成为现实使用的实用工具,但离线META-RL提出了除在线META-RL或标准离线RL设置之外的其他挑战。 Meta-RL学习了一种探索策略,该策略收集了用于适应的数据,并元培训策略迅速适应了新任务的数据。由于该策略是在固定的离线数据集上进行了元训练的,因此当适应学识渊博的勘探策略收集的数据时,它可能表现得不可预测,这与离线数据有系统地不同,从而导致分布变化。我们提出了一种混合脱机元元素算法,该算法使用带有奖励的脱机数据来进行自适应策略,然后收集其他无监督的在线数据,而无需任何奖励标签来桥接这一分配变化。通过不需要在线收集的奖励标签,此数据可以便宜得多。我们将我们的方法比较了在模拟机器人的运动和操纵任务上进行离线元rl的先前工作,并发现使用其他无监督的在线数据收集可以显着提高元训练政策的自适应能力,从而匹配完全在线的表现。在一系列具有挑战性的域上,需要对新任务进行概括。
translated by 谷歌翻译
人类可以利用先前的经验,并从少数示威活动中学习新颖的任务。与旨在通过更好的算法设计来快速适应的离线元强化学习相反,我们研究了建筑归纳偏见对少量学习能力的影响。我们提出了一个基于及时的决策变压器(提示-DT),该变压器利用了变压器体系结构和及时框架的顺序建模能力,以在离线RL中实现少量适应。我们设计了轨迹提示,其中包含少量演示的片段,并编码特定于任务的信息以指导策略生成。我们在五个Mujoco控制基准中进行的实验表明,提示-DT是一个强大的少数学习者,而没有对看不见的目标任务进行任何额外的填充。提示-DT的表现优于其变体和强大的元线RL基线,只有一个轨迹提示符只包含少量时间段。提示-DT也很健壮,可以提示长度更改并可以推广到分布(OOD)环境。
translated by 谷歌翻译
在许多顺序决策问题(例如,机器人控制,游戏播放,顺序预测),人类或专家数据可用包含有关任务的有用信息。然而,来自少量专家数据的模仿学习(IL)可能在具有复杂动态的高维环境中具有挑战性。行为克隆是一种简单的方法,由于其简单的实现和稳定的收敛而被广泛使用,但不利用涉及环境动态的任何信息。由于对奖励和政策近似器或偏差,高方差梯度估计器,难以在实践中难以在实践中努力训练的许多现有方法。我们介绍了一种用于动态感知IL的方法,它通过学习单个Q函数来避免对抗训练,隐含地代表奖励和策略。在标准基准测试中,隐式学习的奖励显示与地面真实奖励的高正面相关性,说明我们的方法也可以用于逆钢筋学习(IRL)。我们的方法,逆软Q学习(IQ-Learn)获得了最先进的结果,在离线和在线模仿学习设置中,显着优于现有的现有方法,这些方法都在所需的环境交互和高维空间中的可扩展性中,通常超过3倍。
translated by 谷歌翻译
The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.
translated by 谷歌翻译
最近的工作表明,离线增强学习(RL)可以作为序列建模问题(Chen等,2021; Janner等,2021)配制,并通过类似于大规模语言建模的方法解决。但是,RL的任何实际实例化也涉及一个在线组件,在线组件中,通过与环境的任务规定相互作用对被动离线数据集进行了预测的策略。我们建议在线决策变压器(ODT),这是一种基于序列建模的RL算法,该算法将离线预处理与统一框架中的在线填充融为一体。我们的框架将序列级熵正规仪与自回归建模目标结合使用,用于样品效率探索和填充。从经验上讲,我们表明ODT在D4RL基准上的绝对性能中与最先进的表现具有竞争力,但在填充过程中显示出更大的收益。
translated by 谷歌翻译
本文解决了逆增强学习(IRL)的问题 - 从观察其行为中推断出代理的奖励功能。 IRL可以为学徒学习提供可概括和紧凑的代表,并能够准确推断人的偏好以帮助他们。 %并提供更准确的预测。但是,有效的IRL具有挑战性,因为许多奖励功能可以与观察到的行为兼容。我们专注于如何利用先前的强化学习(RL)经验,以使学习这些偏好更快,更高效。我们提出了IRL算法基础(通过样本中的连续功能意图推断行为获取行为),该算法利用多任务RL预培训和后继功能,使代理商可以为跨越可能的目标建立强大的基础,从而跨越可能的目标。给定的域。当仅接触一些专家演示以优化新颖目标时,代理商会使用其基础快速有效地推断奖励功能。我们的实验表明,我们的方法非常有效地推断和优化显示出奖励功能,从而准确地从少于100个轨迹中推断出奖励功能。
translated by 谷歌翻译
我们研究了离线模仿学习(IL)的问题,在该问题中,代理商旨在学习最佳的专家行为政策,而无需其他在线环境互动。取而代之的是,该代理来自次优行为的补充离线数据集。解决此问题的先前工作要么要求专家数据占据离线数据集的大部分比例,要么需要学习奖励功能并在以后执行离线加强学习(RL)。在本文中,我们旨在解决问题,而无需进行奖励学习和离线RL培训的其他步骤,当时示范包含大量次优数据。基于行为克隆(BC),我们引入了一个额外的歧视者,以区分专家和非专家数据。我们提出了一个合作框架,以增强这两个任务的学习,基于此框架,我们设计了一种新的IL算法,其中歧视者的输出是BC损失的权重。实验结果表明,与基线算法相比,我们提出的算法可获得更高的回报和更快的训练速度。
translated by 谷歌翻译
我们提出了状态匹配的离线分布校正估计(SMODICE),这是一种新颖且基于多功能回归的离线模仿学习(IL)算法,该算法是通过状态占用匹配得出的。我们表明,SMODICE目标通过在表格MDP中的Fenchel二元性和一个分析解决方案的应用来接受一个简单的优化过程。不需要访问专家的行动,可以将Smodice有效地应用于三个离线IL设置:(i)模仿观察值(IFO),(ii)IFO具有动态或形态上不匹配的专家,以及(iii)基于示例的加固学习,这些学习我们表明可以将其公式为州占领的匹配问题。我们在GridWorld环境以及高维离线基准上广泛评估了Smodice。我们的结果表明,Smodice对于所有三个问题设置都有效,并且在前最新情况下均明显胜过。
translated by 谷歌翻译
离线强化学习在利用大型预采用的数据集进行政策学习方面表现出了巨大的希望,使代理商可以放弃经常廉价的在线数据收集。但是,迄今为止,离线强化学习的探索相对较小,并且缺乏对剩余挑战所在的何处的了解。在本文中,我们试图建立简单的基线以在视觉域中连续控制。我们表明,对两个基于最先进的在线增强学习算法,Dreamerv2和DRQ-V2进行了简单的修改,足以超越事先工作并建立竞争性的基准。我们在现有的离线数据集中对这些算法进行了严格的评估,以及从视觉观察结果中进行离线强化学习的新测试台,更好地代表现实世界中离线增强学习问题中存在的数据分布,并开放我们的代码和数据以促进此方面的进度重要领域。最后,我们介绍并分析了来自视觉观察的离线RL所独有的几个关键Desiderata,包括视觉分散注意力和动态视觉上可识别的变化。
translated by 谷歌翻译
最近的工作表明,单独监督学习,没有时间差异(TD)学习,可以对离线RL显着有效。什么时候保持真实,需要哪些算法组件?通过广泛的实验,我们致力于将RL离线的监督学习到其基本要素。在我们考虑的每个环境套件中,只需通过双层前馈MLP最大化的可能性,与基于TD学习或与变压器的序列建模的基本更复杂的方法具有竞争力的竞争性。仔细选择模型容量(例如,通过正则化或架构),并选择哪些信息(例如,目标或奖励)对性能至关重要。这些见解是通过监督学习进行加强学习的从业者(我们投入“RVS学习”)的实践指南。他们还探讨了现有RVS方法的限制,在随机数据上相对较弱,并提出了许多打开问题。
translated by 谷歌翻译
机器人的共同适应一直是一项长期的研究努力,其目的是将系统的身体和行为适应给定的任务,灵感来自动物的自然演变。共同适应有可能消除昂贵的手动硬件工程,并提高系统性能。共同适应的标准方法是使用奖励功能来优化行为和形态。但是,众所周知,定义和构建这种奖励功能是困难的,并且通常是一项重大的工程工作。本文介绍了关于共同适应问题的新观点,我们称之为共同构图:寻找形态和政策,使模仿者可以紧密匹配演示者的行为。为此,我们提出了一种通过匹配示威者的状态分布来适应行为和形态的共同模拟方法。具体而言,我们专注于两种代理之间的状态和动作空间不匹配的挑战性情况。我们发现,共同映射会增加各种任务和设置的行为相似性,并通过将人的步行,慢跑和踢到模拟的人形生物转移来证明共同映射。
translated by 谷歌翻译
有效的探索是深度强化学习的关键挑战。几种方法,例如行为先验,能够利用离线数据,以便在复杂任务上有效加速加强学习。但是,如果手动的任务与所证明的任务过度偏离,则此类方法的有效性是有限的。在我们的工作中,我们建议从离线数据中学习功能,这些功能由更加多样化的任务共享,例如动作与定向之间的相关性。因此,我们介绍了无国有先验,该先验直接在显示的轨迹中直接建模时间一致性,并且即使在对简单任务收集的数据进行培训时,也能够在复杂的任务中推动探索。此外,我们通过从政策和行动之前的概率混合物中动态采样动作,引入了一种新颖的集成方案,用于非政策强化学习中的动作研究。我们将我们的方法与强大的基线相提并论,并提供了经验证据,表明它可以在稀疏奖励环境下的长途持续控制任务中加速加强学习。
translated by 谷歌翻译
我们开发了一种新的持续元学习方法,以解决连续多任务学习中的挑战。在此设置中,代理商的目标是快速通过任何任务序列实现高奖励。先前的Meta-Creenifiltive学习算法已经表现出有希望加速收购新任务的结果。但是,他们需要在培训期间访问所有任务。除了简单地将过去的经验转移到新任务,我们的目标是设计学习学习的持续加强学习算法,使用他们以前任务的经验更快地学习新任务。我们介绍了一种新的方法,连续的元策略搜索(Comps),通过以增量方式,在序列中的每个任务上,通过序列的每个任务来消除此限制,而无需重新访问先前的任务。 Comps持续重复两个子程序:使用RL学习新任务,并使用RL的经验完全离线Meta学习,为后续任务学习做好准备。我们发现,在若干挑战性连续控制任务的旧序列上,Comps优于持续的持续学习和非政策元增强方法。
translated by 谷歌翻译
Deep reinforcement learning algorithms require large amounts of experience to learn an individual task. While in principle meta-reinforcement learning (meta-RL) algorithms enable agents to learn new skills from small amounts of experience, several major challenges preclude their practicality. Current methods rely heavily on on-policy experience, limiting their sample efficiency. The also lack mechanisms to reason about task uncertainty when adapting to new tasks, limiting their effectiveness in sparse reward problems. In this paper, we address these challenges by developing an offpolicy meta-RL algorithm that disentangles task inference and control. In our approach, we perform online probabilistic filtering of latent task variables to infer how to solve a new task from small amounts of experience. This probabilistic interpretation enables posterior sampling for structured and efficient exploration. We demonstrate how to integrate these task variables with off-policy RL algorithms to achieve both metatraining and adaptation efficiency. Our method outperforms prior algorithms in sample efficiency by 20-100X as well as in asymptotic performance on several meta-RL benchmarks.
translated by 谷歌翻译
尽管行为学习近期取得了令人印象深刻的进步,但由于无法利用大型,人类生成的数据集,它落后于计算机视觉和自然语言处理。人类的行为具有较大的差异,多种模式和人类的示范通常不带有奖励标签。这些属性限制了当前方法在离线RL和行为克隆中的适用性,以从大型预收取的数据集中学习。在这项工作中,我们提出了行为变压器(BET),这是一种用多种模式建模未标记的演示数据的新技术。 BET翻新带有动作离散化的标准变压器体系结构,再加上受对象检测中偏移预测启发的多任务动作校正。这使我们能够利用现代变压器的多模式建模能力来预测多模式的连续动作。我们通过实验评估了各种机器人操作和自动驾驶行为数据集的赌注。我们表明,BET可以显着改善以前的最新工作解决方案,同时捕获预采用的数据集中存在的主要模式。最后,通过一项广泛的消融研究,我们分析了BET中每个关键成分的重要性。 BET生成的行为视频可在https://notmahi.github.io/bet上获得
translated by 谷歌翻译
事后重新标记已成为多进球增强学习(RL)的基础技术。这个想法非常简单:任何任意轨迹都可以看作是达到轨迹最终状态的专家演示。直观地,此程序训练了一个目标条件政策,以模仿次优的专家。但是,模仿与事后重新标签之间的这种联系尚不清楚。现代模仿学习算法是用Divergence最小化的语言描述的,但仍然是一个开放的问题。在这项工作中,我们开发了一个统一的目标,以解释这种联系,从中我们可以从中获得目标条件的监督学习(GCSL)和奖励功能,并从第一原则中获得了事后见解体验重播(她)。在实验上,我们发现,尽管目标条件行为克隆(BC)最近取得了进步,但多进球Q学习仍然可以超越BC样方法。此外,两者的香草组合实际上都损害了模型性能。在我们的框架下,我们研究何时期望卑诗省提供帮助,并从经验上验证我们的发现。我们的工作进一步桥接了目标的目标和生成建模,说明了将生成模型成功扩展到RL的细微差别和新途径。
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译