用于运动中的人类的新型视图综合是一个具有挑战性的计算机视觉问题,使得诸如自由视视频之类的应用。现有方法通常使用具有多个输入视图,3D监控或预训练模型的复杂设置,这些模型不会概括为新标识。旨在解决这些限制,我们提出了一种新颖的视图综合框架,以从单视图传感器捕获的任何人的看法生成现实渲染,其具有稀疏的RGB-D,类似于低成本深度摄像头,而没有参与者特定的楷模。我们提出了一种架构来学习由基于球体的神经渲染获得的小说视图中的密集功能,并使用全局上下文修复模型创建完整的渲染。此外,增强剂网络利用了整体保真度,即使在原始视图中的遮挡区域中也能够产生细节的清晰渲染。我们展示了我们的方法为单个稀疏RGB-D输入产生高质量的合成和真实人体演员的新颖视图。它概括了看不见的身份,新的姿势,忠实地重建面部表情。我们的方法优于现有人体观测合成方法,并且对不同水平的输入稀疏性具有稳健性。
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
We present Habitat, a platform for research in embodied artificial intelligence (AI). Habitat enables training embodied agents (virtual robots) in highly efficient photorealistic 3D simulation. Specifically, Habitat consists of: (i) Habitat-Sim: a flexible, high-performance 3D simulator with configurable agents, sensors, and generic 3D dataset handling. Habitat-Sim is fast -when rendering a scene from Matterport3D, it achieves several thousand frames per second (fps) running single-threaded, and can reach over 10,000 fps multi-process on a single GPU. (ii) Habitat-API: a modular high-level library for end-toend development of embodied AI algorithms -defining tasks (e.g. navigation, instruction following, question answering), configuring, training, and benchmarking embodied agents.These large-scale engineering contributions enable us to answer scientific questions requiring experiments that were till now impracticable or 'merely' impractical. Specifically, in the context of point-goal navigation: (1) we revisit the comparison between learning and SLAM approaches from two recent works [20,16] and find evidence for the opposite conclusion -that learning outperforms SLAM if scaled to an order of magnitude more experience than previous investigations, and (2) we conduct the first cross-dataset generalization experiments {train, test} × {Matterport3D, Gibson} for multiple sensors {blind, RGB, RGBD, D} and find that only agents with depth (D) sensors generalize across datasets. We hope that our open-source platform and these findings will advance research in embodied AI.
translated by 谷歌翻译
我们介绍了ThreedWorld(TDW),是交互式多模态物理模拟的平台。 TDW能够模拟高保真感官数据和富裕的3D环境中的移动代理和对象之间的物理交互。独特的属性包括:实时近光 - 真实图像渲染;对象和环境库,以及他们定制的例程;有效构建新环境课程的生成程序;高保真音频渲染;各种材料类型的现实物理相互作用,包括布料,液体和可变形物体;可定制的代理体现AI代理商;并支持与VR设备的人类交互。 TDW的API使多个代理能够在模拟中进行交互,并返回一系列表示世界状态的传感器和物理数据。我们在计算机视觉,机器学习和认知科学中的新兴的研究方向上提供了通过TDW的初始实验,包括多模态物理场景理解,物理动态预测,多代理交互,像孩子一样学习的模型,并注意研究人类和神经网络。
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
我们介绍了栖息地2.0(H2.0),这是一个模拟平台,用于培训交互式3D环境和复杂物理的场景中的虚拟机器人。我们为体现的AI堆栈 - 数据,仿真和基准任务做出了全面的贡献。具体来说,我们提出:(i)复制:一个由艺术家的,带注释的,可重新配置的3D公寓(匹配真实空间)与铰接对象(例如可以打开/关闭的橱柜和抽屉); (ii)H2.0:一个高性能物理学的3D模拟器,其速度超过8-GPU节点上的每秒25,000个模拟步骤(实时850x实时),代表先前工作的100倍加速;和(iii)家庭助理基准(HAB):一套辅助机器人(整理房屋,准备杂货,设置餐桌)的一套常见任务,以测试一系列移动操作功能。这些大规模的工程贡献使我们能够系统地比较长期结构化任务中的大规模加固学习(RL)和经典的感官平面操作(SPA)管道,并重点是对新对象,容器和布局的概括。 。我们发现(1)与层次结构相比,(1)平面RL政策在HAB上挣扎; (2)具有独立技能的层次结构遭受“交接问题”的困扰,(3)水疗管道比RL政策更脆。
translated by 谷歌翻译
从“Internet AI”的时代到“体现AI”的时代,AI算法和代理商出现了一个新兴范式转变,其中不再从主要来自Internet策划的图像,视频或文本的数据集。相反,他们通过与与人类类似的Enocentric感知来通过与其环境的互动学习。因此,对体现AI模拟器的需求存在大幅增长,以支持各种体现的AI研究任务。这种越来越多的体现AI兴趣是有利于对人工综合情报(AGI)的更大追求,但对这一领域并无一直存在当代和全面的调查。本文旨在向体现AI领域提供百科全书的调查,从其模拟器到其研究。通过使用我们提出的七种功能评估九个当前体现的AI模拟器,旨在了解模拟器,以其在体现AI研究和其局限性中使用。最后,本文调查了体现AI - 视觉探索,视觉导航和体现问题的三个主要研究任务(QA),涵盖了最先进的方法,评估指标和数据集。最后,随着通过测量该领域的新见解,本文将为仿真器 - 任务选择和建议提供关于该领域的未来方向的建议。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
自主场景的曝光和探索,尤其是在本地化或沟通有限的区域,对于在未知场景中寻找目标有用,仍然是计算机导航中的一个具有挑战性的问题。在这项工作中,我们提出了一种用于实时环境探索的新方法,其唯一的要求是一个视觉上相似的数据集,用于预训练,场景中足够的照明以及用于环境感应的机上前瞻性RGB摄像机。与现有方法相反,我们的方法只需要一个外观(图像)才能做出一个良好的战术决定,因此在非成长,恒定的时间内起作用。两个方向的预测以像素为特征,称为goto和lookat像素,包括我们方法的核心。这些像素通过以下方式编码建议的飞行指令:goto像素定义了代理应以一个距离单位移动的方向,而Lookat像素定义了相机应在下一步中指向的方向。这些飞行的指导像素经过优化,以揭示当前未开发的区域的最多数量。我们的方法提出了一种新型的基于深度学习的导航方法,能够解决此问题并在更复杂的设置中证明其能力,即计算能力有限。此外,我们提出了一种生成面向导航数据集的方法,从而可以使用RGB和深度图像对我们的方法有效培训。在模拟器中进行的测试,评估了稀疏像素的推断过程的协调,以及旨在揭示区域并降低目标距离的2D和3D测试飞行取得了令人鼓舞的结果。与最先进的算法的比较表明,我们的方法能够表现出色,在测量每个相机姿势的新体素,最小距离目标距离,所见表面素的百分比和计算时间指标。
translated by 谷歌翻译
Two less addressed issues of deep reinforcement learning are (1) lack of generalization capability to new target goals, and (2) data inefficiency i.e., the model requires several (and often costly) episodes of trial and error to converge, which makes it impractical to be applied to real-world scenarios. In this paper, we address these two issues and apply our model to the task of target-driven visual navigation. To address the first issue, we propose an actor-critic model whose policy is a function of the goal as well as the current state, which allows to better generalize. To address the second issue, we propose AI2-THOR framework, which provides an environment with highquality 3D scenes and physics engine. Our framework enables agents to take actions and interact with objects. Hence, we can collect a huge number of training samples efficiently.We show that our proposed method (1) converges faster than the state-of-the-art deep reinforcement learning methods, (2) generalizes across targets and across scenes, (3) generalizes to a real robot scenario with a small amount of fine-tuning (although the model is trained in simulation), ( 4) is end-to-end trainable and does not need feature engineering, feature matching between frames or 3D reconstruction of the environment.The supplementary video can be accessed at the following link: https://youtu.be/SmBxMDiOrvs.
translated by 谷歌翻译
数据驱动的模拟器承诺高数据效率进行驾驶策略学习。当用于建模相互作用时,这种数据效率变为瓶颈:小型基础数据集通常缺乏用于学习交互式驾驶的有趣和具有挑战性的边缘案例。我们通过提出使用绘制的ADO车辆学习强大的驾驶策略的仿真方法来解决这一挑战。因此,我们的方法可用于学习涉及多代理交互的策略,并允许通过最先进的策略学习方法进行培训。我们评估了驾驶中学习标准交互情景的方法。在广泛的实验中,我们的工作表明,由此产生的政策可以直接转移到全规模的自治车辆,而无需使用任何传统的SIM-to-Real传输技术,例如域随机化。
translated by 谷歌翻译
移动机器人的视觉导航经典通过SLAM加上最佳规划,最近通过实现作为深网络的端到端培训。虽然前者通常仅限于航点计划,但即使在真实的物理环境中已经证明了它们的效率,后一种解决方案最常用于模拟中,但已被证明能够学习更复杂的视觉推理,涉及复杂的语义规则。通过实际机器人在物理环境中导航仍然是一个开放问题。端到端的培训方法仅在模拟中进行了彻底测试,实验涉及实际机器人的实际机器人在简化的实验室条件下限制为罕见的性能评估。在这项工作中,我们对真实物理代理的性能和推理能力进行了深入研究,在模拟中培训并部署到两个不同的物理环境。除了基准测试之外,我们提供了对不同条件下不同代理商培训的泛化能力的见解。我们可视化传感器使用以及不同类型信号的重要性。我们展示了,对于Pointgoal Task,一个代理在各种任务上进行预先培训,并在目标环境的模拟版本上进行微调,可以达到竞争性能,而无需建模任何SIM2重传,即通过直接从仿真部署培训的代理即可一个真正的物理机器人。
translated by 谷歌翻译
深度学习的关键批评之一是,需要大量昂贵且难以获得的训练数据,以便培训具有高性能和良好的概率功能的模型。专注于通过场景坐标回归(SCR)的单眼摄像机姿势估计的任务,我们描述了一种新的方法,用于相机姿势估计(舞蹈)网络的域改编,这使得培训模型无需访问目标任务上的任何标签。舞蹈需要未标记的图像(没有已知的姿势,订购或场景坐标标签)和空间的3D表示(例如,扫描点云),这两者都可以使用现成的商品硬件最少的努力来捕获。舞蹈渲染从3D模型标记的合成图像,通过应用无监督的图像级域适应技术(未配对图像到图像转换)来桥接合成和实图像之间的不可避免的域间隙。在实际图像上进行测试时,舞蹈培训的SCR模型在成本的一小部分中对其完全监督的对应物(在两种情况下使用PNP-RANSAC进行最终姿势估算的情况下)进行了相当的性能。我们的代码和数据集可以在https://github.com/jacklangerman/dance获得
translated by 谷歌翻译
机器学习的最近进步已经创造了利用一类基于坐标的神经网络来解决视觉计算问题的兴趣,该基于坐标的神经网络在空间和时间跨空间和时间的场景或对象的物理属性。我们称之为神经领域的这些方法已经看到在3D形状和图像的合成中成功应用,人体的动画,3D重建和姿势估计。然而,由于在短时间内的快速进展,许多论文存在,但尚未出现全面的审查和制定问题。在本报告中,我们通过提供上下文,数学接地和对神经领域的文学进行广泛综述来解决这一限制。本报告涉及两种维度的研究。在第一部分中,我们通过识别神经字段方法的公共组件,包括不同的表示,架构,前向映射和泛化方法来专注于神经字段的技术。在第二部分中,我们专注于神经领域的应用在视觉计算中的不同问题,超越(例如,机器人,音频)。我们的评论显示了历史上和当前化身的视觉计算中已覆盖的主题的广度,展示了神经字段方法所带来的提高的质量,灵活性和能力。最后,我们展示了一个伴随着贡献本综述的生活版本,可以由社区不断更新。
translated by 谷歌翻译
随着腿部机器人和嵌入式计算都变得越来越有能力,研究人员已经开始专注于这些机器人的现场部署。在非结构化环境中的强大自治需要对机器人周围的世界感知,以避免危害。但是,由于处理机车动力学所需的复杂规划人员和控制器,因此在网上合并在线的同时在线保持敏捷运动对腿部机器人更具挑战性。该报告将比较三种最新的感知运动方法,并讨论可以使用视觉来实现腿部自主权的不同方式。
translated by 谷歌翻译
View-dependent effects such as reflections pose a substantial challenge for image-based and neural rendering algorithms. Above all, curved reflectors are particularly hard, as they lead to highly non-linear reflection flows as the camera moves. We introduce a new point-based representation to compute Neural Point Catacaustics allowing novel-view synthesis of scenes with curved reflectors, from a set of casually-captured input photos. At the core of our method is a neural warp field that models catacaustic trajectories of reflections, so complex specular effects can be rendered using efficient point splatting in conjunction with a neural renderer. One of our key contributions is the explicit representation of reflections with a reflection point cloud which is displaced by the neural warp field, and a primary point cloud which is optimized to represent the rest of the scene. After a short manual annotation step, our approach allows interactive high-quality renderings of novel views with accurate reflection flow. Additionally, the explicit representation of reflection flow supports several forms of scene manipulation in captured scenes, such as reflection editing, cloning of specular objects, reflection tracking across views, and comfortable stereo viewing. We provide the source code and other supplemental material on https://repo-sam.inria.fr/ fungraph/neural_catacaustics/
translated by 谷歌翻译
这项工作研究了图像目标导航问题,需要通过真正拥挤的环境引导具有嘈杂传感器和控制的机器人。最近的富有成效的方法依赖于深度加强学习,并学习模拟环境中的导航政策,这些环境比真实环境更简单。直接将这些训练有素的策略转移到真正的环境可能非常具有挑战性甚至危险。我们用由四个解耦模块组成的分层导航方法来解决这个问题。第一模块在机器人导航期间维护障碍物映射。第二个将定期预测实时地图上的长期目标。第三个计划碰撞命令集以导航到长期目标,而最终模块将机器人正确靠近目标图像。四个模块是单独开发的,以适应真实拥挤的情景中的图像目标导航。此外,分层分解对导航目标规划,碰撞避免和导航结束预测的学习进行了解耦,这在导航训练期间减少了搜索空间,并有助于改善以前看不见的真实场景的概括。我们通过移动机器人评估模拟器和现实世界中的方法。结果表明,我们的方法优于多种导航基线,可以在这些方案中成功实现导航任务。
translated by 谷歌翻译
Training embodied agents in simulation has become mainstream for the embodied AI community. However, these agents often struggle when deployed in the physical world due to their inability to generalize to real-world environments. In this paper, we present Phone2Proc, a method that uses a 10-minute phone scan and conditional procedural generation to create a distribution of training scenes that are semantically similar to the target environment. The generated scenes are conditioned on the wall layout and arrangement of large objects from the scan, while also sampling lighting, clutter, surface textures, and instances of smaller objects with randomized placement and materials. Leveraging just a simple RGB camera, training with Phone2Proc shows massive improvements from 34.7% to 70.7% success rate in sim-to-real ObjectNav performance across a test suite of over 200 trials in diverse real-world environments, including homes, offices, and RoboTHOR. Furthermore, Phone2Proc's diverse distribution of generated scenes makes agents remarkably robust to changes in the real world, such as human movement, object rearrangement, lighting changes, or clutter.
translated by 谷歌翻译
机器人社区已经开始严重依赖越来越逼真的3D模拟器,以便在大量数据上进行大规模培训机器人。但是,一旦机器人部署在现实世界中,仿真差距以及现实世界的变化(例如,灯,物体位移)导致错误。在本文中,我们介绍了SIM2Realviz,这是一种视觉分析工具,可以帮助专家了解并减少机器人EGO-POSE估计任务的这种差距,即使用训练型模型估计机器人的位置。 Sim2Realviz显示了给定模型的详细信息以及在模拟和现实世界中的实例的性能。专家可以识别在给定位置影响模型预测的环境差异,并通过与模型假设的直接交互来探索来解决它。我们详细介绍了工具的设计,以及与对平均偏差的回归利用以及如何解决的案例研究以及如何解决,以及模型如何被诸如自行车等地标的消失的扰动。
translated by 谷歌翻译