由于多药的组合被广泛应用,因此准确的药物相互作用(DDI)的准确预测变得越来越关键。在我们的方法中,我们使用图代表药物相互作用:节点代表药物;边缘代表药物相互作用。基于我们的假设,我们将DDI的预测转换为链接预测问题,利用已知的药物节点特性和DDI类型来预测未知的DDI类型。这项工作提出了一个图形距离神经网络(GDNN),以预测药物 - 药物相互作用。首先,GDNN通过目标点方法生成节点的初始特征,完全包括图中的距离信息。其次,GDNN采用改进的消息传递框架来更好地生成每个药物节点嵌入式表达式,全面考虑节点和边缘的特征。第三,GDNN聚集了嵌入式表达式,经过MLP处理以生成最终预测的药物相互作用类型。 GDNN在OGB-DDI数据集上实现了hits@20 = 0.9037,证明GDNN可以有效地预测DDI。
translated by 谷歌翻译
在本文中,我们提出了一种用于链接预测任务的路径感知暹罗图神经网络(PSG)的算法。首先,PSG可以捕获给定两个节点的节点和边缘特征,即k-邻晶的结构信息和节点的继电器路径信息。此外,PSG利用暹罗图神经网络来表示两个对比链接,这是一个积极的联系和负面的联系。我们在OGBL-DDI的Open Graph Benchmark(OGB)的链接属性预测数据集上评估了所提出的算法PSG。PSG在OGBL-DDI上取得了前1位的表现。实验结果验证了PSG的优势。
translated by 谷歌翻译
多药物(定义为使用多种药物)是一种标准治疗方法,尤其是对于严重和慢性疾病。但是,将多种药物一起使用可能会导致药物之间的相互作用。药物 - 药物相互作用(DDI)是一种与另一种药物结合时的影响发生变化时发生的活性。 DDI可能会阻塞,增加或减少药物的预期作用,或者在最坏情况下,会产生不利的副作用。虽然准时检测DDI至关重要,但由于持续时间短,并且在临床试验中识别它们是时间的,而且昂贵,并且要考虑许多可能的药物对进行测试。结果,需要计算方法来预测DDI。在本文中,我们提出了一种新型的异质图注意模型Han-DDI,以预测药物 - 药物相互作用。我们建立了具有不同生物实体的药物网络。然后,我们开发了一个异质的图形注意网络,以使用药物与其他实体的关系学习DDI。它由一个基于注意力的异质图节点编码器组成,用于获得药物节点表示和用于预测药物相互作用的解码器。此外,我们利用全面的实验来评估我们的模型并将其与最先进的模型进行比较。实验结果表明,我们提出的方法Han-DDI的表现可以显着,准确地预测DDI,即使对于新药也是如此。
translated by 谷歌翻译
在本文中,我们提供了一种使用图形神经网络(GNNS)的理论,用于多节点表示学习(我们有兴趣学习一组多个节点的表示)。我们知道GNN旨在学习单节点表示。当我们想学习涉及多个节点的节点集表示时,先前作品中的常见做法是直接将GNN学习的多节点表示与节点集的关节表示。在本文中,我们显示了这种方法的基本限制,即无法捕获节点集中节点之间的依赖性,并且认为直接聚合各个节点表示不会导致多个节点的有效关节表示。然后,我们注意到,以前的一些成功的工作作品用于多节点表示学习,包括密封,距离编码和ID-GNN,所有使用的节点标记。这些方法根据应用GNN之前的与目标节点集的关系,首先标记图中的节点。然后,在标记的图表中获得的节点表示被聚合到节点集表示中。通过调查其内部机制,我们将这些节点标记技术统一到单个和最基本的形式,即标记技巧。我们证明,通过标记技巧,可以获得足够富有表现力的GNN学习最具表现力的节点集表示,因此原则上可以解决节点集的任何联合学习任务。关于一个重要的双节点表示学习任务,链接预测,验证了我们理论的实验。我们的工作建立了使用GNN在节点集上使用GNN进行联合预测任务的理论基础。
translated by 谷歌翻译
协同的药物组合为增强治疗功效和减少不良反应提供了巨大的潜力。然而,由于未知的因果疾病信号通路,有效和协同的药物组合预测仍然是一个悬而未决的问题。尽管已经提出了各种深度学习(AI)模型来定量预测药物组合的协同作用。现有深度学习方法的主要局限性是它们本质上是不可解释的,这使得AI模型的结论是对人类专家的非透明度的结论,因此限制了模型结论的鲁棒性和这些模型在现实世界中的实施能力人类医疗保健。在本文中,我们开发了一个可解释的图神经网络(GNN),该神经网络(GNN)揭示了通过挖掘非常重要的亚分子网络来揭示协同(MOS)的基本基本治疗靶标和机制。可解释的GNN预测模型的关键点是一个新颖的图池层,基于自我注意的节点和边缘池(此后为SANEPOOL),可以根据节点特征和图表计算节点和边缘的注意力评分(重要性)拓扑。因此,提出的GNN模型提供了一种系统的方法来预测和解释基于检测到的关键亚分子网络的药物组合协同作用。我们评估了来自NCI Almanac药物组合筛查数据的46个核心癌症信号通路和药物组合的基因制造的分子网络。实验结果表明,1)Sanepool可以在其他流行的图神经网络中实现当前的最新性能; 2)由SANEPOOOL检测到的亚分子网络是可自我解释的,并且可以鉴定协同的药物组合。
translated by 谷歌翻译
图形神经网络(GNN)已被广泛应用于各种领域,以通过图形结构数据学习。在各种任务(例如节点分类和图形分类)中,他们对传统启发式方法显示了显着改进。但是,由于GNN严重依赖于平滑的节点特征而不是图形结构,因此在链接预测中,它们通常比简单的启发式方法表现出差的性能,例如,结构信息(例如,重叠的社区,学位和最短路径)至关重要。为了解决这一限制,我们建议邻里重叠感知的图形神经网络(NEO-GNNS),这些神经网络(NEO-GNNS)从邻接矩阵中学习有用的结构特征,并估算了重叠的邻域以进行链接预测。我们的Neo-Gnns概括了基于社区重叠的启发式方法,并处理重叠的多跳社区。我们在开放图基准数据集(OGB)上进行的广泛实验表明,NEO-GNNS始终在链接预测中实现最新性能。我们的代码可在https://github.com/seongjunyun/neo_gnns上公开获取。
translated by 谷歌翻译
网络完成是一个比链接预测更难的问题,因为它不仅尝试推断丢失的链接,还要推断节点。已经提出了不同的方法来解决此问题,但是很少有人使用结构信息 - 局部连接模式的相似性。在本文中,我们提出了一个名为C-GIN的模型,以根据图形自动编码器框架从网络的观察到的部分捕获局部结构模式,该框架配备了图形同构网络模型,并将这些模式推广到完成整个图形。对来自不同领域的合成和现实世界网络的实验和分析表明,C-Gin可以实现竞争性能,而所需的信息较少,并且在大多数情况下,与基线预测模型相比,可以获得更高的准确性。我们进一步提出了一个基于网络结构的“可达聚类系数(CC)”。实验表明,我们的模型在具有较高可及的CC的网络上表现更好。
translated by 谷歌翻译
在本文中,我们旨在提供有效的成对学习神经链路预测(PLNLP)框架。该框架将链路预测视为对等级问题的成对学习,包括四个主要组件,即邻域编码器,链路预测器,负采样器和目标函数组成。该框架灵活地,任何通用图形神经卷积或链路预测特定神经结构都可以作为邻域编码器。对于链路预测器,我们设计不同的评分功能,可以基于不同类型的图表来选择。在否定采样器中,我们提供了几种采样策略,这些策略是特定的问题。至于目标函数,我们建议使用有效的排名损失,这大约最大化标准排名度量AUC。我们在4个链路属性预测数据集上评估了开放图基准的4个链接属性预测数据集,包括\ texttt {ogbl-ddi},\ texttt {ogbl-collbab},\ texttt {ogbl-ppa}和\ texttt {ogbl-ciation2}。 PLNLP在\ TextTt {ogbl-ddi}上实现前1个性能,以及仅使用基本神经架构的\ texttt {ogbl-collab}和\ texttt {ogbl-ciation2}的前2个性能。该性能展示了PLNLP的有效性。
translated by 谷歌翻译
链接预测是一项重要的任务,在各个域中具有广泛的应用程序。但是,大多数现有的链接预测方法都假定给定的图遵循同质的假设,并设计基于相似性的启发式方法或表示学习方法来预测链接。但是,许多现实世界图是异性图,同义假设不存在,这挑战了现有的链接预测方法。通常,在异性图中,有许多引起链接形成的潜在因素,并且两个链接的节点在一个或两个因素中往往相似,但在其他因素中可能是不同的,导致总体相似性较低。因此,一种方法是学习每个节点的分离表示形式,每个矢量捕获一个因子上的节点的潜在表示,这铺平了一种方法来模拟异性图中的链接形成,从而导致更好的节点表示学习和链接预测性能。但是,对此的工作非常有限。因此,在本文中,我们研究了一个新的问题,该问题是在异性图上进行链接预测的分离表示学习。我们提出了一种新颖的框架分解,可以通过建模链接形成并执行感知因素的消息来学习以促进链接预测来学习解开的表示形式。在13个现实世界数据集上进行的广泛实验证明了Disenlink对异性恋和血友病图的链接预测的有效性。我们的代码可从https://github.com/sjz5202/disenlink获得
translated by 谷歌翻译
药物 - 药物相互作用(DDIS)可能会阻碍药物的功能,在最坏的情况下,它们可能导致不良药物反应(ADR)。预测所有DDI是一个具有挑战性且关键的问题。大多数现有的计算模型都集成了来自不同来源的药物中心信息,并利用它们作为机器学习分类器中的功能来预测DDIS。但是,这些模型有很大的失败机会,尤其是对于所有信息都没有可用的新药。本文提出了一个新型的HyperGraph神经网络(HYGNN)模型,仅基于用于DDI预测问题的任何药物的微笑串。为了捕获药物的相似性,我们创建了从微笑字符串中提取的药物的化学子结构中创建的超图。然后,我们开发了由新型的基于注意力的超图边缘编码器组成的HYGNN,以使药物的表示形式和解码器,以预测药物对之间的相互作用。此外,我们进行了广泛的实验,以评估我们的模型并将其与几种最新方法进行比较。实验结果表明,我们提出的HYGNN模型有效地预测了DDI,并以最大的ROC-AUC和PR-AUC分别超过基准,分别为97.9%和98.1%。
translated by 谷歌翻译
Graph neural networks (GNNs) have received remarkable success in link prediction (GNNLP) tasks. Existing efforts first predefine the subgraph for the whole dataset and then apply GNNs to encode edge representations by leveraging the neighborhood structure induced by the fixed subgraph. The prominence of GNNLP methods significantly relies on the adhoc subgraph. Since node connectivity in real-world graphs is complex, one shared subgraph is limited for all edges. Thus, the choices of subgraphs should be personalized to different edges. However, performing personalized subgraph selection is nontrivial since the potential selection space grows exponentially to the scale of edges. Besides, the inference edges are not available during training in link prediction scenarios, so the selection process needs to be inductive. To bridge the gap, we introduce a Personalized Subgraph Selector (PS2) as a plug-and-play framework to automatically, personally, and inductively identify optimal subgraphs for different edges when performing GNNLP. PS2 is instantiated as a bi-level optimization problem that can be efficiently solved differently. Coupling GNNLP models with PS2, we suggest a brand-new angle towards GNNLP training: by first identifying the optimal subgraphs for edges; and then focusing on training the inference model by using the sampled subgraphs. Comprehensive experiments endorse the effectiveness of our proposed method across various GNNLP backbones (GCN, GraphSage, NGCF, LightGCN, and SEAL) and diverse benchmarks (Planetoid, OGB, and Recommendation datasets). Our code is publicly available at \url{https://github.com/qiaoyu-tan/PS2}
translated by 谷歌翻译
学习表达性分子表示对于促进分子特性的准确预测至关重要。尽管图形神经网络(GNNS)在分子表示学习中取得了显着进步,但它们通常面临诸如邻居探索,不足,过度光滑和过度阵列之类的局限性。同样,由于参数数量大,GNN通常具有较高的计算复杂性。通常,当面对相对大尺寸的图形或使用更深的GNN模型体系结构时,这种限制会出现或增加。克服这些问题的一个想法是将分子图简化为小型,丰富且有益的信息,这更有效,更具挑战性的培训GNN。为此,我们提出了一个新颖的分子图粗化框架,名为FUNQG利用函数组,作为分子的有影响力的构件来确定其性质,基于称为商图的图理论概念。通过实验,我们表明所产生的信息图比分子图小得多,因此是训练GNN的良好候选者。我们将FUNQG应用于流行的分子属性预测基准,然后比较所获得的数据集上的GNN体系结构的性能与原始数据集上的几个最先进的基线。通过实验,除了其参数数量和低计算复杂性的急剧减少之外,该方法除了其急剧减少之外,在各种数据集上的表现显着优于先前的基准。因此,FUNQG可以用作解决分子表示学习问题的简单,成本效益且可靠的方法。
translated by 谷歌翻译
Link prediction is a crucial problem in graph-structured data. Due to the recent success of graph neural networks (GNNs), a variety of GNN-based models were proposed to tackle the link prediction task. Specifically, GNNs leverage the message passing paradigm to obtain node representation, which relies on link connectivity. However, in a link prediction task, links in the training set are always present while ones in the testing set are not yet formed, resulting in a discrepancy of the connectivity pattern and bias of the learned representation. It leads to a problem of dataset shift which degrades the model performance. In this paper, we first identify the dataset shift problem in the link prediction task and provide theoretical analyses on how existing link prediction methods are vulnerable to it. We then propose FakeEdge, a model-agnostic technique, to address the problem by mitigating the graph topological gap between training and testing sets. Extensive experiments demonstrate the applicability and superiority of FakeEdge on multiple datasets across various domains.
translated by 谷歌翻译
图形神经网络(GNN)在许多基于图的学​​习任务中表现出很大的优势,但通常无法准确预测基于任务的节点集,例如链接/主题预测等。最近,许多作品通过使用随机节点功能或节点距离特征来解决此问题。但是,它们的收敛速度缓慢,预测不准确或高复杂性。在这项工作中,我们重新访问允许使用位置编码(PE)技术(例如Laplacian eigenmap,deepwalk等)的节点的位置特征。 。在这里,我们以原则性的方式研究了这些问题,并提出了一种可证明的解决方案,这是一类用严格数学分析的钉子的GNN层。 PEG使用单独的频道来更新原始节点功能和位置功能。 PEG施加置换量比W.R.T.原始节点功能并施加$ O(P)$(正交组)均值W.R.T.位置特征同时特征,其中$ p $是二手位置特征的维度。在8个现实世界网络上进行的广泛链接预测实验证明了PEG在概括和可伸缩性方面的优势。
translated by 谷歌翻译
最近,图形神经网络(GNNS)在各种现实情景中获得了普及。尽管取得了巨大成功,但GNN的建筑设计严重依赖于体力劳动。因此,自动化图形神经网络(Autopmn)引起了研究界的兴趣和关注,近年来显着改善。然而,现有的autopnn工作主要采用隐式方式来模拟并利用图中的链接信息,这对图中的链路预测任务不充分规范化,并限制了自动启动的其他图表任务。在本文中,我们介绍了一个新的Autognn工作,该工作明确地模拟了缩写为autogel的链接信息。以这种方式,AutoGel可以处理链路预测任务并提高Autognns对节点分类和图形分类任务的性能。具体地,AutoGel提出了一种新的搜索空间,包括层内和层间设计中的各种设计尺寸,并采用更强大的可分辨率搜索算法,以进一步提高效率和有效性。基准数据集的实验结果展示了自动池上的优势在几个任务中。
translated by 谷歌翻译
Learning node embeddings that capture a node's position within the broader graph structure is crucial for many prediction tasks on graphs. However, existing Graph Neural Network (GNN) architectures have limited power in capturing the position/location of a given node with respect to all other nodes of the graph. Here we propose Position-aware Graph Neural Networks (P-GNNs), a new class of GNNs for computing position-aware node embeddings. P-GNN first samples sets of anchor nodes, computes the distance of a given target node to each anchor-set, and then learns a non-linear distance-weighted aggregation scheme over the anchor-sets. This way P-GNNs can capture positions/locations of nodes with respect to the anchor nodes. P-GNNs have several advantages: they are inductive, scalable, and can incorporate node feature information. We apply P-GNNs to multiple prediction tasks including link prediction and community detection. We show that P-GNNs consistently outperform state of the art GNNs, with up to 66% improvement in terms of the ROC AUC score.Node embedding methods can be categorized into Graph Neural Networks (GNNs) approaches (Scarselli et al., 2009),
translated by 谷歌翻译
链接预测是图神经网络(GNN)的重要应用。链接预测的大多数现有GNN基于一维Weisfeiler-Lehman(1-WL)测试。 1-wl-gnn首先通过迭代的相邻节点特征来计算中心,然后通过汇总成对节点表示来获得链接表示。正如先前的作品所指出的那样,这两步过程会导致较低的区分功能,因为自然而然地学习节点级表示而不是链接级别。在本文中,我们研究了一种完全不同的方法,该方法可以基于\ textit {二维WEISFEILER-LEHMAN(2-WL)测试直接获得节点对(链接)表示。 2-WL测试直接使用链接(2个小说)作为消息传递单元而不是节点,因此可以直接获得链接表示。我们理论上分析了2-WL测试的表达能力以区分非晶状体链接,并证明其优越的链接与1-WL相比。基于不同的2-WL变体,我们提出了一系列用于链路预测的新型2-WL-GNN模型。在广泛的现实数据集上进行的实验证明了它们对最先进的基线的竞争性能以及优于普通1-WL-GNN的优势。
translated by 谷歌翻译
我们介绍了一种新颖的屏蔽图AutoEncoder(MGAE)框架,以在图形结构数据上执行有效的学习。从自我监督学习中欣识见,我们随机掩盖了大部分边缘,并在训练期间尝试重建这些缺失的边缘。 Mgae有两个核心设计。首先,我们发现掩蔽了输入图结构的高比率,例如70 \%$,产生一个非凡和有意义的自我监督任务,使下游应用程序受益。其次,我们使用图形神经网络(GNN)作为编码器,以在部分掩蔽的图表上执行消息传播。为了重建大量掩模边缘,提出了一种定制的互相关解码器。它可以捕获多粒度的锚边的头部和尾部节点之间的互相关。耦合这两种设计使MGAE能够有效且有效地培训。在多个开放数据集(Planetoid和OGB基准测试)上进行了广泛的实验,证明MGAE通常比链接预测和节点分类更好地表现优于最先进的无监督竞争对手。
translated by 谷歌翻译
文本分类任务的关键是语言表示和重要信息提取,并且有许多相关研究。近年来,文本分类中的图形神经网络(GNN)的研究逐渐出现并显示出其优势,但现有模型主要集中于直接将单词作为图形节点直接输入GNN模型,而忽略了不同级别的语义结构信息。样品。为了解决该问题,我们提出了一个新的层次图神经网络(HIEGNN),该图分别从Word级,句子级别和文档级别提取相应的信息。与几种基线方法相比,几个基准数据集的实验结果取得更好或相似的结果,这表明我们的模型能够从样品中获得更多有用的信息。
translated by 谷歌翻译
Clustering is a fundamental problem in network analysis that finds closely connected groups of nodes and separates them from other nodes in the graph, while link prediction is to predict whether two nodes in a network are likely to have a link. The definition of both naturally determines that clustering must play a positive role in obtaining accurate link prediction tasks. Yet researchers have long ignored or used inappropriate ways to undermine this positive relationship. In this article, We construct a simple but efficient clustering-driven link prediction framework(ClusterLP), with the goal of directly exploiting the cluster structures to obtain connections between nodes as accurately as possible in both undirected graphs and directed graphs. Specifically, we propose that it is easier to establish links between nodes with similar representation vectors and cluster tendencies in undirected graphs, while nodes in a directed graphs can more easily point to nodes similar to their representation vectors and have greater influence in their own cluster. We customized the implementation of ClusterLP for undirected and directed graphs, respectively, and the experimental results using multiple real-world networks on the link prediction task showed that our models is highly competitive with existing baseline models. The code implementation of ClusterLP and baselines we use are available at https://github.com/ZINUX1998/ClusterLP.
translated by 谷歌翻译