在许多计算机视觉应用程序中,对高动态范围(HDR)场景的能力至关重要。然而,传统传感器的动态范围基本上受其井容量的限制,导致明亮场景部件的饱和度。为了克服这种限制,新兴传感器提供了用于编码入射辐照度的像素处理能力。在最有前途的编码方案中,模数包装,其导致计算机拍摄场景由来自包裹的低动态(LDR)传感器图像的辐照法展开算法计算的计算摄影问题。在这里,我们设计了一种基于神经网络的算法,优于先前的辐照度展示方法,更重要的是,我们设计了一种感知的激发灵感的“螳螂”编码方案,从而更有效地将HDR场景包装到LDR传感器中。结合我们的重建框架,Mantissacam在模型快照HDR成像方法中实现了最先进的结果。我们展示了我们在模拟中的效果,并显示了用可编程传感器实现的原型尾涂的初步结果。
translated by 谷歌翻译
来自单个运动模糊图像的视频重建是一个具有挑战性的问题,可以增强现有的相机的能力。最近,几种作品使用传统的成像和深度学习解决了这项任务。然而,由于方向模糊和噪声灵敏度,这种纯粹 - 数字方法本质上是有限的。一些作品提出使用非传统图像传感器解决这些限制,然而,这种传感器非常罕见和昂贵。为了使这些限制具有更简单的方法,我们提出了一种用于视频重建的混合光学 - 数字方法,其仅需要对现有光学系统的简单修改。在图像采集期间,在镜头孔径中使用学习的动态相位编码以对运动轨迹进行编码,该运动轨迹用作视频重建过程的先前信息。使用图像到视频卷积神经网络,所提出的计算相机以各种编码运动模糊图像的各种帧速率产生锐帧帧突发。与现有方法相比,我们使用模拟和现实世界的相机原型表现了优势和改进的性能。
translated by 谷歌翻译
由智能手机和中端相机捕获的照片的空间分辨率和动态范围有限,在饱和区域中未充满刺激的区域和颜色人工制品中的嘈杂响应。本文介绍了第一种方法(据我们所知),以重建高分辨率,高动态范围的颜色图像,这些颜色来自带有曝光括号的手持相机捕获的原始照相爆发。该方法使用图像形成的物理精确模型来结合迭代优化算法,用于求解相应的逆问题和学习的图像表示,以进行健壮的比对,并以前的自然图像。所提出的算法很快,与基于最新的学习图像恢复方法相比,内存需求较低,并且从合成但逼真的数据终止学习的特征。广泛的实验证明了其出色的性能,具有最多$ \ times 4 $的超分辨率因子在野外拍摄的带有手持相机的真实照片,以及对低光条件,噪音,摄像机摇动和中等物体运动的高度鲁棒性。
translated by 谷歌翻译
光学系统的可区分模拟可以与基于深度学习的重建网络结合使用,以通过端到端(E2E)优化光学编码器和深度解码器来实现高性能计算成像。这使成像应用程序(例如3D定位显微镜,深度估计和无透镜摄影)通过优化局部光学编码器。更具挑战性的计算成像应用,例如将3D卷压入单个2D图像的3D快照显微镜,需要高度非本地光学编码器。我们表明,现有的深网解码器具有局部性偏差,可防止这种高度非本地光学编码器的优化。我们使用全球内核傅里叶卷积神经网络(Fouriernets)基于浅神经网络体系结构的解码器来解决此问题。我们表明,在高度非本地分散镜头光学编码器捕获的照片中,傅立叶网络超过了现有的基于网络的解码器。此外,我们表明傅里叶可以对3D快照显微镜的高度非本地光学编码器进行E2E优化。通过将傅立叶网和大规模多GPU可区分的光学模拟相结合,我们能够优化非本地光学编码器170 $ \ times $ \ times $ tos 7372 $ \ times $ \ times $ \ times $比以前的最新状态,并证明了ROI的潜力-type特定的光学编码使用可编程显微镜。
translated by 谷歌翻译
高动态范围(HDR)成像是一种允许广泛的动态曝光范围的技术,这在图像处理,计算机图形和计算机视觉中很重要。近年来,使用深度学习(DL),HDR成像有重大进展。本研究对深层HDR成像方法的最新发展进行了综合和富有洞察力的调查和分析。在分层和结构上,将现有的深层HDR成像方法基于(1)输入曝光的数量/域,(2)学习任务数,(3)新传感器数据,(4)新的学习策略,(5)应用程序。重要的是,我们对关于其潜在和挑战的每个类别提供建设性的讨论。此外,我们审查了深度HDR成像的一些关键方面,例如数据集和评估指标。最后,我们突出了一些打开的问题,并指出了未来的研究方向。
translated by 谷歌翻译
在极低光线条件下捕获图像会对标准相机管道带来重大挑战。图像变得太黑了,太吵了,这使得传统的增强技术几乎不可能申请。最近,基于学习的方法已经为此任务显示了非常有希望的结果,因为它们具有更大的表现力能力来允许提高质量。这些研究中的激励,在本文中,我们的目标是利用爆破摄影来提高性能,并从极端暗的原始图像获得更加锐利和更准确的RGB图像。我们提出的框架的骨干是一种新颖的粗良好网络架构,逐步产生高质量的输出。粗略网络预测了低分辨率,去噪的原始图像,然后将其馈送到精细网络以恢复微尺的细节和逼真的纹理。为了进一步降低噪声水平并提高颜色精度,我们将该网络扩展到置换不变结构,使得它作为输入突发为低光图像,并在特征级别地合并来自多个图像的信息。我们的实验表明,我们的方法通过生产更详细和相当更高的质量的图像来引起比最先进的方法更令人愉悦的结果。
translated by 谷歌翻译
Lensless cameras are a class of imaging devices that shrink the physical dimensions to the very close vicinity of the image sensor by replacing conventional compound lenses with integrated flat optics and computational algorithms. Here we report a diffractive lensless camera with spatially-coded Voronoi-Fresnel phase to achieve superior image quality. We propose a design principle of maximizing the acquired information in optics to facilitate the computational reconstruction. By introducing an easy-to-optimize Fourier domain metric, Modulation Transfer Function volume (MTFv), which is related to the Strehl ratio, we devise an optimization framework to guide the optimization of the diffractive optical element. The resulting Voronoi-Fresnel phase features an irregular array of quasi-Centroidal Voronoi cells containing a base first-order Fresnel phase function. We demonstrate and verify the imaging performance for photography applications with a prototype Voronoi-Fresnel lensless camera on a 1.6-megapixel image sensor in various illumination conditions. Results show that the proposed design outperforms existing lensless cameras, and could benefit the development of compact imaging systems that work in extreme physical conditions.
translated by 谷歌翻译
基于快速的神经形态的视觉传感器(动态视觉传感器,DVS)可以与基于较慢的帧的传感器组合,以实现比使用例如固定运动近似的传统方法更高质量的帧间内插。光流。在这项工作中,我们展示了一个新的高级事件模拟器,可以产生由相机钻机录制的现实场景,该仪器具有位于固定偏移的任意数量的传感器。它包括具有现实图像质量降低效果的新型可配置帧的图像传感器模型,以及具有更精确的特性的扩展DVS模型。我们使用我们的模拟器培训一个新的重建模型,专为高FPS视频的端到端重建而设计。与以前发表的方法不同,我们的方法不需要帧和DVS相机具有相同的光学,位置或相机分辨率。它还不限于物体与传感器的固定距离。我们表明我们的模拟器生成的数据可用于训练我们的新模型,导致在与最先进的公共数据集上的公共数据集中的重建图像。我们还向传感器展示了真实传感器记录的数据。
translated by 谷歌翻译
本文研究了从快照编码的LDR视频重建高动态范围(HDR)视频。构建HDR视频需要为每个帧恢复HDR值并保持连续帧之间的一致性。从单个图像捕获的HDR图像获取,也称为快照HDR成像,可以通过多种方式实现。例如,通过将光学元件引入相机的光学堆叠来实现可重新配置的快照HDR相机;通过将编码掩模放置在传感器前方的小支座距离处。可以使用深度学习方法从捕获的编码图像中恢复高质量的HDR图像。本研究利用3D-CNNS从编码LDR视频执行联合去脱模,去噪和HDR视频重建。我们通过引入考虑短期和长期一致性的时间损耗函数来执行更季度一致的HDR视频重建。获得的结果是有前途的,可以使用传统相机导致经济实惠的HDR视频捕获。
translated by 谷歌翻译
Spatially varying spectral modulation can be implemented using a liquid crystal spatial light modulator (SLM) since it provides an array of liquid crystal cells, each of which can be purposed to act as a programmable spectral filter array. However, such an optical setup suffers from strong optical aberrations due to the unintended phase modulation, precluding spectral modulation at high spatial resolutions. In this work, we propose a novel computational approach for the practical implementation of phase SLMs for implementing spatially varying spectral filters. We provide a careful and systematic analysis of the aberrations arising out of phase SLMs for the purposes of spatially varying spectral modulation. The analysis naturally leads us to a set of "good patterns" that minimize the optical aberrations. We then train a deep network that overcomes any residual aberrations, thereby achieving ideal spectral modulation at high spatial resolution. We show a number of unique operating points with our prototype including dynamic spectral filtering, material classification, and single- and multi-image hyperspectral imaging.
translated by 谷歌翻译
成像传感器在10-12位的动态范围内将传入场景光数字化(即1024--4096色调值)。然后将传感器图像加工在相机上,最后量化为仅8位(即256个音调值),以符合普遍的编码标准。有许多重要的应用程序,例如高位深度显示和照片编辑,有利于恢复丢失的位深度。深度神经网络在该位深度重建任务中是有效的。给定量化的低位深度图像作为输入,现有的深度学习方法采用单次方法,该方法尝试直接估计高位深度图像,或(2)直接估计高的剩余物 - 和低位深度图像。相比之下,我们提出了一种培训和推理策略,可以恢复剩余图像位平平面。我们的BitPlane-Wise学习框架具有允许在训练期间进行多级监督的优势,并且能够使用简单的网络架构获得最先进的结果。我们在多个图像数据集上广泛地测试了我们提出的方法,并在以前的方法上证明了0.5db至2.3db psnr的改进,这取决于量化水平。
translated by 谷歌翻译
近年来已经提出了显示屏下的显示器,作为减少移动设备的形状因子的方式,同时最大化屏幕区域。不幸的是,将相机放在屏幕后面导致显着的图像扭曲,包括对比度,模糊,噪音,色移,散射伪像和降低光敏性的损失。在本文中,我们提出了一种图像恢复管道,其是ISP-Annostic,即它可以与任何传统ISP组合,以产生使用相同的ISP与常规相机外观匹配的最终图像。这是通过执行Raw-Raw Image Restoration的深度学习方法来实现的。为了获得具有足够对比度和场景多样性的大量实际展示摄像机培训数据,我们还开发利用HDR监视器的数据捕获方法,以及数据增强方法以产生合适的HDR内容。监视器数据补充有现实世界的数据,该数据具有较少的场景分集,但允许我们实现细节恢复而不受监视器分辨率的限制。在一起,这种方法成功地恢复了颜色和对比度以及图像细节。
translated by 谷歌翻译
间接飞行时间(ITOF)相机是一个有希望的深度传感技术。然而,它们容易出现由多路径干扰(MPI)和低信噪比(SNR)引起的错误。传统方法,在去噪后,通过估计编码深度的瞬态图像来减轻MPI。最近,在不使用中间瞬态表示的情况下,共同去噪和减轻MPI的数据驱动方法已经成为最先进的。在本文中,我们建议重新审视瞬态代表。使用数据驱动的Priors,我们将其插入/推断ITOF频率并使用它们来估计瞬态图像。给定直接TOF(DTOF)传感器捕获瞬态图像,我们将我们的方法命名为ITOF2DTOF。瞬态表示是灵活的。它可以集成与基于规则的深度感测算法,对低SNR具有强大,并且可以处理实际上出现的模糊场景(例如,镜面MPI,光学串扰)。我们在真正深度传感方案中展示了先前方法上的ITOF2DTOF的好处。
translated by 谷歌翻译
在许多图像处理任务中,深度学习方法的成功,最近还将深度学习方法引入了阶段检索问题。这些方法与传统的迭代优化方法不同,因为它们通常只需要一个强度测量,并且可以实时重建相位图像。但是,由于巨大的领域差异,这些方法给出的重建图像的质量仍然有很大的改进空间来满足一般应用要求。在本文中,我们设计了一种新型的深神经网络结构,名为Sisprnet,以基于单个傅立叶强度测量值进行相检索。为了有效利用测量的光谱信息,我们建议使用多层感知器(MLP)作为前端提出一个新的特征提取单元。它允许将输入强度图像的所有像素一起考虑,以探索其全局表示。 MLP的大小经过精心设计,以促进代表性特征的提取,同时减少噪音和异常值。辍学层还可以减轻训练MLP的过度拟合问题。为了促进重建图像中的全局相关性,将自我注意力的机制引入了提议的Sisprnet的上采样和重建(UR)块。这些UR块被插入残留的学习结构中,以防止由于其复杂的层结构而导致的较弱的信息流和消失的梯度问题。使用线性相关幅度和相位的仅相位图像和图像的不同测试数据集对所提出的模型进行了广泛的评估。在光学实验平台上进行了实验,以了解在实用环境中工作时不同深度学习方法的性能。
translated by 谷歌翻译
The ability to record high-fidelity videos at high acquisition rates is central to the study of fast moving phenomena. The difficulty of imaging fast moving scenes lies in a trade-off between motion blur and underexposure noise: On the one hand, recordings with long exposure times suffer from motion blur effects caused by movements in the recorded scene. On the other hand, the amount of light reaching camera photosensors decreases with exposure times so that short-exposure recordings suffer from underexposure noise. In this paper, we propose to address this trade-off by treating the problem of high-speed imaging as an underexposed image denoising problem. We combine recent advances on underexposed image denoising using deep learning and adapt these methods to the specificity of the high-speed imaging problem. Leveraging large external datasets with a sensor-specific noise model, our method is able to speedup the acquisition rate of a High-Speed Camera over one order of magnitude while maintaining similar image quality.
translated by 谷歌翻译
空间变化暴露(SVE)是高动态(HDR)成像(HDRI)的有希望的选择。被称为单射HDRI的SVE的HDRI是一种有效的解决方案,以避免重影文物。然而,恢复从真实世界的图像与SVE恢复全分辨率的HDR图像是非常具有挑战性的,因为:a)在拜耳图案中,通过相机捕获具有不同曝光的三分之一的像素,B)捕获的一些捕获像素过于和暴露。对于以前的挑战,设计了一种空间变化的卷积(SVC)来设计以改变曝光的携带携带的拜耳图像。对于后者,提出了一种曝光 - 引导方法,以防止来自暴露和暴露的像素的干扰。最后,联合去脱模和HDRI深度学习框架被形式化以包括两种新型组件,并实现端到端的单次HDRI。实验表明,所提出的端到端框架避免了累积误差问题并超越了相关的最先进的方法。
translated by 谷歌翻译
傅立叶Ptychographic显微镜(FPM)是一种成像过程,它通过计算平均值克服了传统的传统显微镜空间带宽产品(SBP)的限制。它利用使用低数值孔径(NA)物镜捕获的多个图像,并通过频域缝线实现高分辨率相成像。现有的FPM重建方法可以广泛地分为两种方法:基于迭代优化的方法,这些方法基于正向成像模型的物理学以及通常采用馈送深度学习框架的数据驱动方法。我们提出了一个混合模型驱动的残留网络,该网络将远期成像系统的知识与深度数据驱动的网络相结合。我们提出的架构LWGNET将传统的电线流优化算法展开为一种新型的神经网络设计,该设计通过复杂的卷积块增强了梯度图像。与其他传统的展开技术不同,LWGNET在PAR上执行时使用的阶段较少,甚至比现有的传统和深度学习技术更好,尤其是对于低成本和低动态范围CMOS传感器。低位深度和低成本传感器的性能提高有可能显着降低FPM成像设置的成本。最后,我们在收集到的实际数据上显示出始终提高的性能。
translated by 谷歌翻译
在许多重要的科学和工程应用中发现了卷数据。渲染此数据以高质量和交互速率为苛刻的应用程序(例如虚拟现实)的可视化化,即使使用专业级硬件也无法实现。我们介绍了Fovolnet - 一种可显着提高数量数据可视化的性能的方法。我们开发了一种具有成本效益的渲染管道,该管道稀疏地对焦点进行了量度,并使用深层神经网络重建了全帧。 FOVEATED渲染是一种优先考虑用户焦点渲染计算的技术。这种方法利用人类视觉系统的属性,从而在用户视野的外围呈现数据时节省了计算资源。我们的重建网络结合了直接和内核预测方法,以产生快速,稳定和感知令人信服的输出。凭借纤细的设计和量化的使用,我们的方法在端到端框架时间和视觉质量中都优于最先进的神经重建技术。我们对系统的渲染性能,推理速度和感知属性进行了广泛的评估,并提供了与竞争神经图像重建技术的比较。我们的测试结果表明,Fovolnet始终在保持感知质量的同时,在传统渲染上节省了大量时间。
translated by 谷歌翻译
相位检索(PR)是从其仅限强度测量中恢复复杂值信号的长期挑战,由于其在数字成像中的广泛应用,引起了很大的关注。最近,开发了基于深度学习的方法,这些方法在单发PR中取得了成功。这些方法需要单个傅立叶强度测量,而无需对测量数据施加任何其他约束。然而,由于PR问题的输入和输出域之间存在很大的差异,香草深神经网络(DNN)并没有提供良好的性能。物理信息的方法试图将傅立叶强度测量结果纳入提高重建精度的迭代方法。但是,它需要一个冗长的计算过程,并且仍然无法保证准确性。此外,其中许多方法都在模拟数据上工作,这些数据忽略了一些常见问题,例如实用光学PR系统中的饱和度和量化错误。在本文中,提出了一种新型的物理驱动的多尺度DNN结构,称为PPRNET。与其他基于深度学习的PR方法类似,PPRNET仅需要一个傅立叶强度测量。物理驱动的是,网络被指导遵循不同尺度的傅立叶强度测量,以提高重建精度。 PPRNET具有前馈结构,可以端到端训练。因此,它比传统物理驱动的PR方法更快,更准确。进行了实用光学平台上的大量模拟和实验。结果证明了拟议的PPRNET比传统的基于基于学习的PR方法的优势和实用性。
translated by 谷歌翻译
We present a simple but novel hybrid approach to hyperspectral data cube reconstruction from computed tomography imaging spectrometry (CTIS) images that sequentially combines neural networks and the iterative Expectation Maximization (EM) algorithm. We train and test the ability of the method to reconstruct data cubes of $100\times100\times25$ and $100\times100\times100$ voxels, corresponding to 25 and 100 spectral channels, from simulated CTIS images generated by our CTIS simulator. The hybrid approach utilizes the inherent strength of the Convolutional Neural Network (CNN) with regard to noise and its ability to yield consistent reconstructions and make use of the EM algorithm's ability to generalize to spectral images of any object without training. The hybrid approach achieves better performance than both the CNNs and EM alone for seen (included in CNN training) and unseen (excluded from CNN training) cubes for both the 25- and 100-channel cases. For the 25 spectral channels, the improvements from CNN to the hybrid model (CNN + EM) in terms of the mean-squared errors are between 14-26%. For 100 spectral channels, the improvements between 19-40% are attained with the largest improvement of 40% for the unseen data, to which the CNNs are not exposed during the training.
translated by 谷歌翻译