光学系统的可区分模拟可以与基于深度学习的重建网络结合使用,以通过端到端(E2E)优化光学编码器和深度解码器来实现高性能计算成像。这使成像应用程序(例如3D定位显微镜,深度估计和无透镜摄影)通过优化局部光学编码器。更具挑战性的计算成像应用,例如将3D卷压入单个2D图像的3D快照显微镜,需要高度非本地光学编码器。我们表明,现有的深网解码器具有局部性偏差,可防止这种高度非本地光学编码器的优化。我们使用全球内核傅里叶卷积神经网络(Fouriernets)基于浅神经网络体系结构的解码器来解决此问题。我们表明,在高度非本地分散镜头光学编码器捕获的照片中,傅立叶网络超过了现有的基于网络的解码器。此外,我们表明傅里叶可以对3D快照显微镜的高度非本地光学编码器进行E2E优化。通过将傅立叶网和大规模多GPU可区分的光学模拟相结合,我们能够优化非本地光学编码器170 $ \ times $ \ times $ tos 7372 $ \ times $ \ times $ \ times $比以前的最新状态,并证明了ROI的潜力-type特定的光学编码使用可编程显微镜。
translated by 谷歌翻译
我们提出了一种依赖工程点扩散功能(PSF)的紧凑型快照单眼估计技术。微观超分辨率成像中使用的传统方法,例如双螺旋PSF(DHPSF),不适合比稀疏的一组点光源更复杂的场景。我们使用cram \'er-rao下限(CRLB)显示,将DHPSF的两个叶分开,从而捕获两个单独的图像导致深度精度的急剧增加。用于生成DHPSF的相掩码的独特属性是,将相掩码分为两个半部分,导致两个裂片的空间分离。我们利用该属性建立一个基于紧凑的极化光学设置,在该设置中,我们将两个正交线性极化器放在DHPSF相位掩码的每一半上,然后使用极化敏感的摄像机捕获所得图像。模拟和实验室原型的结果表明,与包括DHPSF和Tetrapod PSF在内的最新设计相比,我们的技术达到了高达50美元的深度误差,而空间分辨率几乎没有损失。
translated by 谷歌翻译
强度衍射断层扫描(IDT)是指用于从一组仅2D强度测量的样品成像样品的3D折射率(RI)分布的一类光学显微镜技术。由于相位信息的丢失和缺失的锥体问题,无伪影RI地图的重建是IDT的一个基本挑战。神经领域(NF)最近成为一种新的深度学习方法(DL),用于学习物理领域的连续表示。 NF使用基于坐标的神经网络来表示该场,通过将空间坐标映射到相应的物理量,在我们的情况下,复杂价值的折射率值。我们将DEPAF作为第一种基于NF的IDT方法,可以从仅强度和有限角度的测量值中学习RI体积的高质量连续表示。 DECAF中的表示形式是通过使用IDT向前模型直接从测试样品的测量值中学到的,而无需任何地面真相图。我们对模拟和实验生物学样品进行定性和定量评估DECAF。我们的结果表明,DECAF可以生成高对比度和无伪影RI图,并导致MSE超过现有方法的2.1倍。
translated by 谷歌翻译
光学成像通常用于行业和学术界的科学和技术应用。在图像传感中,通过数字化图像的计算分析来执行一个测量,例如对象的位置。新兴的图像感应范例通过设计光学组件来执行不进行成像而是编码,从而打破了数据收集和分析之间的描述。通过将图像光学地编码为适合有效分析后的压缩,低维的潜在空间,这些图像传感器可以以更少的像素和更少的光子来工作,从而可以允许更高的直通量,较低的延迟操作。光学神经网络(ONNS)提供了一个平台,用于处理模拟,光学域中的数据。然而,基于ONN的传感器仅限于线性处理,但是非线性是深度的先决条件,而多层NNS在许多任务上的表现都大大优于浅色。在这里,我们使用商业图像增强器作为平行光电子,光学到光学非线性激活函数,实现用于图像传感的多层预处理器。我们证明,非线性ONN前处理器可以达到高达800:1的压缩率,同时仍然可以在几个代表性的计算机视觉任务中高精度,包括机器视觉基准测试,流程度图像分类以及对对象中对象的识别,场景。在所有情况下,我们都会发现ONN的非线性和深度使其能够胜过纯线性ONN编码器。尽管我们的实验专门用于ONN传感器的光线图像,但替代ONN平台应促进一系列ONN传感器。这些ONN传感器可能通过在空间,时间和/或光谱尺寸中预处处理的光学信息来超越常规传感器,并可能具有相干和量子质量,所有这些都在光学域中。
translated by 谷歌翻译
来自单个运动模糊图像的视频重建是一个具有挑战性的问题,可以增强现有的相机的能力。最近,几种作品使用传统的成像和深度学习解决了这项任务。然而,由于方向模糊和噪声灵敏度,这种纯粹 - 数字方法本质上是有限的。一些作品提出使用非传统图像传感器解决这些限制,然而,这种传感器非常罕见和昂贵。为了使这些限制具有更简单的方法,我们提出了一种用于视频重建的混合光学 - 数字方法,其仅需要对现有光学系统的简单修改。在图像采集期间,在镜头孔径中使用学习的动态相位编码以对运动轨迹进行编码,该运动轨迹用作视频重建过程的先前信息。使用图像到视频卷积神经网络,所提出的计算相机以各种编码运动模糊图像的各种帧速率产生锐帧帧突发。与现有方法相比,我们使用模拟和现实世界的相机原型表现了优势和改进的性能。
translated by 谷歌翻译
相位检索(PR)是从其仅限强度测量中恢复复杂值信号的长期挑战,由于其在数字成像中的广泛应用,引起了很大的关注。最近,开发了基于深度学习的方法,这些方法在单发PR中取得了成功。这些方法需要单个傅立叶强度测量,而无需对测量数据施加任何其他约束。然而,由于PR问题的输入和输出域之间存在很大的差异,香草深神经网络(DNN)并没有提供良好的性能。物理信息的方法试图将傅立叶强度测量结果纳入提高重建精度的迭代方法。但是,它需要一个冗长的计算过程,并且仍然无法保证准确性。此外,其中许多方法都在模拟数据上工作,这些数据忽略了一些常见问题,例如实用光学PR系统中的饱和度和量化错误。在本文中,提出了一种新型的物理驱动的多尺度DNN结构,称为PPRNET。与其他基于深度学习的PR方法类似,PPRNET仅需要一个傅立叶强度测量。物理驱动的是,网络被指导遵循不同尺度的傅立叶强度测量,以提高重建精度。 PPRNET具有前馈结构,可以端到端训练。因此,它比传统物理驱动的PR方法更快,更准确。进行了实用光学平台上的大量模拟和实验。结果证明了拟议的PPRNET比传统的基于基于学习的PR方法的优势和实用性。
translated by 谷歌翻译
Lensless cameras are a class of imaging devices that shrink the physical dimensions to the very close vicinity of the image sensor by replacing conventional compound lenses with integrated flat optics and computational algorithms. Here we report a diffractive lensless camera with spatially-coded Voronoi-Fresnel phase to achieve superior image quality. We propose a design principle of maximizing the acquired information in optics to facilitate the computational reconstruction. By introducing an easy-to-optimize Fourier domain metric, Modulation Transfer Function volume (MTFv), which is related to the Strehl ratio, we devise an optimization framework to guide the optimization of the diffractive optical element. The resulting Voronoi-Fresnel phase features an irregular array of quasi-Centroidal Voronoi cells containing a base first-order Fresnel phase function. We demonstrate and verify the imaging performance for photography applications with a prototype Voronoi-Fresnel lensless camera on a 1.6-megapixel image sensor in various illumination conditions. Results show that the proposed design outperforms existing lensless cameras, and could benefit the development of compact imaging systems that work in extreme physical conditions.
translated by 谷歌翻译
在许多计算机视觉应用程序中,对高动态范围(HDR)场景的能力至关重要。然而,传统传感器的动态范围基本上受其井容量的限制,导致明亮场景部件的饱和度。为了克服这种限制,新兴传感器提供了用于编码入射辐照度的像素处理能力。在最有前途的编码方案中,模数包装,其导致计算机拍摄场景由来自包裹的低动态(LDR)传感器图像的辐照法展开算法计算的计算摄影问题。在这里,我们设计了一种基于神经网络的算法,优于先前的辐照度展示方法,更重要的是,我们设计了一种感知的激发灵感的“螳螂”编码方案,从而更有效地将HDR场景包装到LDR传感器中。结合我们的重建框架,Mantissacam在模型快照HDR成像方法中实现了最先进的结果。我们展示了我们在模拟中的效果,并显示了用可编程传感器实现的原型尾涂的初步结果。
translated by 谷歌翻译
Control of light through a microscope objective with a high numerical aperture is a common requirement in applications such as optogenetics, adaptive optics, or laser processing. Light propagation, including polarization effects, can be described under these conditions using the Debye-Wolf diffraction integral. Here, we take advantage of differentiable optimization and machine learning for efficiently optimizing the Debye-Wolf integral for such applications. For light shaping we show that this optimization approach is suitable for engineering arbitrary three-dimensional point spread functions in a two-photon microscope. For differentiable model-based adaptive optics (DAO), the developed method can find aberration corrections with intrinsic image features, for example neurons labeled with genetically encoded calcium indicators, without requiring guide stars. Using computational modeling we further discuss the range of spatial frequencies and magnitudes of aberrations which can be corrected with this approach.
translated by 谷歌翻译
Spatially varying spectral modulation can be implemented using a liquid crystal spatial light modulator (SLM) since it provides an array of liquid crystal cells, each of which can be purposed to act as a programmable spectral filter array. However, such an optical setup suffers from strong optical aberrations due to the unintended phase modulation, precluding spectral modulation at high spatial resolutions. In this work, we propose a novel computational approach for the practical implementation of phase SLMs for implementing spatially varying spectral filters. We provide a careful and systematic analysis of the aberrations arising out of phase SLMs for the purposes of spatially varying spectral modulation. The analysis naturally leads us to a set of "good patterns" that minimize the optical aberrations. We then train a deep network that overcomes any residual aberrations, thereby achieving ideal spectral modulation at high spatial resolution. We show a number of unique operating points with our prototype including dynamic spectral filtering, material classification, and single- and multi-image hyperspectral imaging.
translated by 谷歌翻译
机器学习的最近进步已经创造了利用一类基于坐标的神经网络来解决视觉计算问题的兴趣,该基于坐标的神经网络在空间和时间跨空间和时间的场景或对象的物理属性。我们称之为神经领域的这些方法已经看到在3D形状和图像的合成中成功应用,人体的动画,3D重建和姿势估计。然而,由于在短时间内的快速进展,许多论文存在,但尚未出现全面的审查和制定问题。在本报告中,我们通过提供上下文,数学接地和对神经领域的文学进行广泛综述来解决这一限制。本报告涉及两种维度的研究。在第一部分中,我们通过识别神经字段方法的公共组件,包括不同的表示,架构,前向映射和泛化方法来专注于神经字段的技术。在第二部分中,我们专注于神经领域的应用在视觉计算中的不同问题,超越(例如,机器人,音频)。我们的评论显示了历史上和当前化身的视觉计算中已覆盖的主题的广度,展示了神经字段方法所带来的提高的质量,灵活性和能力。最后,我们展示了一个伴随着贡献本综述的生活版本,可以由社区不断更新。
translated by 谷歌翻译
计算光学成像(COI)系统利用其设置中的光学编码元素(CE)在单个或多个快照中编码高维场景,并使用计算算法对其进行解码。 COI系统的性能很大程度上取决于其主要组件的设计:CE模式和用于执行给定任务的计算方法。常规方法依赖于随机模式或分析设计来设置CE的分布。但是,深神经网络(DNNS)的可用数据和算法功能已在CE数据驱动的设计中开辟了新的地平线,该设计共同考虑了光学编码器和计算解码器。具体而言,通过通过完全可区分的图像形成模型对COI测量进行建模,该模型考虑了基于物理的光及其与CES的相互作用,可以在端到端优化定义CE和计算解码器的参数和计算解码器(e2e)方式。此外,通过在同一框架中仅优化CE,可以从纯光学器件中执行推理任务。这项工作调查了CE数据驱动设计的最新进展,并提供了有关如何参数化不同光学元素以将其包括在E2E框架中的指南。由于E2E框架可以通过更改损耗功能和DNN来处理不同的推理应用程序,因此我们提出低级任务,例如光谱成像重建或高级任务,例如使用基于任务的光学光学体系结构来增强隐私的姿势估计,以维护姿势估算。最后,我们说明了使用全镜DNN以光速执行的分类和3D对象识别应用程序。
translated by 谷歌翻译
Physically based rendering of complex scenes can be prohibitively costly with a potentially unbounded and uneven distribution of complexity across the rendered image. The goal of an ideal level of detail (LoD) method is to make rendering costs independent of the 3D scene complexity, while preserving the appearance of the scene. However, current prefiltering LoD methods are limited in the appearances they can support due to their reliance of approximate models and other heuristics. We propose the first comprehensive multi-scale LoD framework for prefiltering 3D environments with complex geometry and materials (e.g., the Disney BRDF), while maintaining the appearance with respect to the ray-traced reference. Using a multi-scale hierarchy of the scene, we perform a data-driven prefiltering step to obtain an appearance phase function and directional coverage mask at each scale. At the heart of our approach is a novel neural representation that encodes this information into a compact latent form that is easy to decode inside a physically based renderer. Once a scene is baked out, our method requires no original geometry, materials, or textures at render time. We demonstrate that our approach compares favorably to state-of-the-art prefiltering methods and achieves considerable savings in memory for complex scenes.
translated by 谷歌翻译
在许多图像处理任务中,深度学习方法的成功,最近还将深度学习方法引入了阶段检索问题。这些方法与传统的迭代优化方法不同,因为它们通常只需要一个强度测量,并且可以实时重建相位图像。但是,由于巨大的领域差异,这些方法给出的重建图像的质量仍然有很大的改进空间来满足一般应用要求。在本文中,我们设计了一种新型的深神经网络结构,名为Sisprnet,以基于单个傅立叶强度测量值进行相检索。为了有效利用测量的光谱信息,我们建议使用多层感知器(MLP)作为前端提出一个新的特征提取单元。它允许将输入强度图像的所有像素一起考虑,以探索其全局表示。 MLP的大小经过精心设计,以促进代表性特征的提取,同时减少噪音和异常值。辍学层还可以减轻训练MLP的过度拟合问题。为了促进重建图像中的全局相关性,将自我注意力的机制引入了提议的Sisprnet的上采样和重建(UR)块。这些UR块被插入残留的学习结构中,以防止由于其复杂的层结构而导致的较弱的信息流和消失的梯度问题。使用线性相关幅度和相位的仅相位图像和图像的不同测试数据集对所提出的模型进行了广泛的评估。在光学实验平台上进行了实验,以了解在实用环境中工作时不同深度学习方法的性能。
translated by 谷歌翻译
在许多重要的科学和工程应用中发现了卷数据。渲染此数据以高质量和交互速率为苛刻的应用程序(例如虚拟现实)的可视化化,即使使用专业级硬件也无法实现。我们介绍了Fovolnet - 一种可显着提高数量数据可视化的性能的方法。我们开发了一种具有成本效益的渲染管道,该管道稀疏地对焦点进行了量度,并使用深层神经网络重建了全帧。 FOVEATED渲染是一种优先考虑用户焦点渲染计算的技术。这种方法利用人类视觉系统的属性,从而在用户视野的外围呈现数据时节省了计算资源。我们的重建网络结合了直接和内核预测方法,以产生快速,稳定和感知令人信服的输出。凭借纤细的设计和量化的使用,我们的方法在端到端框架时间和视觉质量中都优于最先进的神经重建技术。我们对系统的渲染性能,推理速度和感知属性进行了广泛的评估,并提供了与竞争神经图像重建技术的比较。我们的测试结果表明,Fovolnet始终在保持感知质量的同时,在传统渲染上节省了大量时间。
translated by 谷歌翻译
Ever since the first microscope by Zacharias Janssen in the late 16th century, scientists have been inventing new types of microscopes for various tasks. Inventing a novel architecture demands years, if not decades, worth of scientific experience and creativity. In this work, we introduce Differentiable Microscopy ($\partial\mu$), a deep learning-based design paradigm, to aid scientists design new interpretable microscope architectures. Differentiable microscopy first models a common physics-based optical system however with trainable optical elements at key locations on the optical path. Using pre-acquired data, we then train the model end-to-end for a task of interest. The learnt design proposal can then be simplified by interpreting the learnt optical elements. As a first demonstration, based on the optical 4-$f$ system, we present an all-optical quantitative phase microscope (QPM) design that requires no computational post-reconstruction. A follow-up literature survey suggested that the learnt architecture is similar to the generalized phase contrast method developed two decades ago. Our extensive experiments on multiple datasets that include biological samples show that our learnt all-optical QPM designs consistently outperform existing methods. We experimentally verify the functionality of the optical 4-$f$ system based QPM design using a spatial light modulator. Furthermore, we also demonstrate that similar results can be achieved by an uninterpretable learning based method, namely diffractive deep neural networks (D2NN). The proposed differentiable microscopy framework supplements the creative process of designing new optical systems and would perhaps lead to unconventional but better optical designs.
translated by 谷歌翻译
We propose a deep learning method for three-dimensional reconstruction in low-dose helical cone-beam computed tomography. We reconstruct the volume directly, i.e., not from 2D slices, guaranteeing consistency along all axes. In a crucial step beyond prior work, we train our model in a self-supervised manner in the projection domain using noisy 2D projection data, without relying on 3D reference data or the output of a reference reconstruction method. This means the fidelity of our results is not limited by the quality and availability of such data. We evaluate our method on real helical cone-beam projections and simulated phantoms. Our reconstructions are sharper and less noisy than those of previous methods, and several decibels better in quantitative PSNR measurements. When applied to full-dose data, our method produces high-quality results orders of magnitude faster than iterative techniques.
translated by 谷歌翻译
由少量镜头组成的全景环形镜头(PAL)在全景周围具有巨大潜力,该镜头围绕着移动和可穿戴设备的传感任务,因为其尺寸很小,并且视野很大(FOV)。然而,由于缺乏畸变校正的镜头,小体积PAL的图像质量仅限于光学极限。在本文中,我们提出了一个环形计算成像(ACI)框架,以打破轻质PAL设计的光学限制。为了促进基于学习的图像恢复,我们引入了基于波浪的模拟管道,用于全景成像,并通过多个数据分布来应对合成间隙。提出的管道可以轻松地适应具有设计参数的任何PAL,并且适用于宽松的设计。此外,我们考虑了全景成像和物理知识学习的物理先验,我们设计了物理知情的图像恢复网络(PI2RNET)。在数据集级别,我们创建了Divpano数据集,其广泛的实验表明,我们提出的网络在空间变化的降级下在全景图像恢复中设置了新的最新技术。此外,对只有3个球形镜头的简单PAL上提议的ACI的评估揭示了高质量全景成像与紧凑设计之间的微妙平衡。据我们所知,我们是第一个探索PAL中计算成像(CI)的人。代码和数据集将在https://github.com/zju-jiangqi/aci-pi2rnet上公开提供。
translated by 谷歌翻译
本文涉及从由此产生的刻薄的单个图像重建折射物体形状的高度挑战性问题。由于日常生活中透明折射物体的难以达到透明折射物体,其形状的重建需要多种实际应用。最近从焦散(SFC)方法的形状作为用于合成苛性图像的光传播仿真的问题,这可以通过可微分的渲染器来解决。然而,通过折射表面的光传输的固有复杂性当前限制了相对于重建速度和鲁棒性的实用性。为了解决这些问题,我们从焦散(N-SFC)引入神经形状,这是一种基于学习的扩展,将两个组件包含在重建管道中:一个去噪模块,该模块减轻了光传输模拟的计算成本和优化基于学习梯度下降的过程,它可以使用较少的迭代来更好地收敛。广泛的实验证明了我们的神经扩展在3D玻璃印刷中质量控制的情况下的有效性,在那里我们在计算速度和最终表面误差方面显着优于当前最先进的。
translated by 谷歌翻译
数字全息图是一种3D成像技术,它通过向物体发射激光束并测量衍射波形的强度,称为全息图。对象的3D形状可以通过对捕获的全息图的数值分析并恢复发生的相位来获得。最近,深度学习(DL)方法已被用于更准确的全息处理。但是,大多数监督方法都需要大型数据集来训练该模型,由于样本或隐私问题的缺乏,大多数DH应用程序都很少获得。存在一些基于DL的恢复方法,不依赖配对图像的大数据集。尽管如此,这些方法中的大多数经常忽略控制波传播的基本物理法。这些方法提供了一个黑盒操作,无法解释,可以推广和转移到其他样本和应用程序。在这项工作中,我们提出了一种基于生成对抗网络的新DL体系结构,该架构使用判别网络来实现重建质量的语义度量,同时使用生成网络作为函数近似器来建模全息图的倒数。我们使用模拟退火驱动的渐进式掩蔽模块将恢复图像的背景部分强加于回收图像的背景部分,以增强重建质量。所提出的方法是一种表现出高传递性对类似样品的可传递性的方法之一,该方法促进了其在时间敏感应用程序中的快速部署,而无需重新培训网络。结果表明,重建质量(约5 dB PSNR增益)和噪声的鲁棒性(PSNR与噪声增加率降低约50%)的竞争者方法有了显着改善。
translated by 谷歌翻译