Scientists and philosophers have debated whether humans can trust advanced artificial intelligence (AI) agents to respect humanity's best interests. Yet what about the reverse? Will advanced AI agents trust humans? Gauging an AI agent's trust in humans is challenging because--absent costs for dishonesty--such agents might respond falsely about their trust in humans. Here we present a method for incentivizing machine decisions without altering an AI agent's underlying algorithms or goal orientation. In two separate experiments, we then employ this method in hundreds of trust games between an AI agent (a Large Language Model (LLM) from OpenAI) and a human experimenter (author TJ). In our first experiment, we find that the AI agent decides to trust humans at higher rates when facing actual incentives than when making hypothetical decisions. Our second experiment replicates and extends these findings by automating game play and by homogenizing question wording. We again observe higher rates of trust when the AI agent faces real incentives. Across both experiments, the AI agent's trust decisions appear unrelated to the magnitude of stakes. Furthermore, to address the possibility that the AI agent's trust decisions reflect a preference for uncertainty, the experiments include two conditions that present the AI agent with a non-social decision task that provides the opportunity to choose a certain or uncertain option; in those conditions, the AI agent consistently chooses the certain option. Our experiments suggest that one of the most advanced AI language models to date alters its social behavior in response to incentives and displays behavior consistent with trust toward a human interlocutor when incentivized.
translated by 谷歌翻译
Taking advice from others requires confidence in their competence. This is important for interaction with peers, but also for collaboration with social robots and artificial agents. Nonetheless, we do not always have access to information about others' competence or performance. In these uncertain environments, do our prior beliefs about the nature and the competence of our interacting partners modulate our willingness to rely on their judgments? In a joint perceptual decision making task, participants made perceptual judgments and observed the simulated estimates of either a human participant, a social humanoid robot or a computer. Then they could modify their estimates based on this feedback. Results show participants' belief about the nature of their partner biased their compliance with its judgments: participants were more influenced by the social robot than human and computer partners. This difference emerged strongly at the very beginning of the task and decreased with repeated exposure to empirical feedback on the partner's responses, disclosing the role of prior beliefs in social influence under uncertainty. Furthermore, the results of our functional task suggest an important difference between human-human and human-robot interaction in the absence of overt socially relevant signal from the partner: the former is modulated by social normative mechanisms, whereas the latter is guided by purely informational mechanisms linked to the perceived competence of the partner.
translated by 谷歌翻译
本文提出了一个论点,说明了为什么我们没有在解释性,可解释性和透明度研究中充分衡量信任。大多数研究要求参与者完成信任量表,以评估他们对已解释/解释的模型的信任。如果信托增加,我们认为这是积极的。但是,这有两个问题。首先,我们通常无法知道参与者是否应该信任该模型。如果模型质量较差,信任肯定应降低。其次,这些量表衡量了感知到的信任,而不是证明信任。本文展示了三种在衡量感知和证明信任方面做得很好的方法。它旨在讨论此主题的起点,而不是成为最终决定。作者引起了批评和讨论。
translated by 谷歌翻译
\ EMPH {人工智能}(AI)系统越来越多地参与影响我们生活的决策,确保自动决策是公平的,道德已经成为最优先事项。直观地,我们觉得类似人的决定,人工代理人的判断应该必然地以一些道德原则为基础。然而,如果有关决定所基础的所有有关因素的全部信息,可以真正伦理(人类或人为)和公平(根据任何道德理论)和公平(根据公平的任何概念)的规定在决策时。这提出了两个问题:(1)在设置中,我们依赖使用通过监督学习获得的分类器的AI系统,存在一些感应/泛化,即使在学习期间也可能不存在一些相关属性。 (2)根据游戏揭示任何 - 无论是道德的纯策略都不可避免地易于剥削,建模这些决定。此外,在许多游戏中,只能通过使用混合策略来获得纳什均衡,即实现数学上最佳结果,决定必须随机化。在本文中,我们认为,在监督学习设置中,存在至少以及确定性分类器的随机分类器,因此在许多情况下可能是最佳选择。我们支持我们的理论效果,具有一个实证研究,表明对随机人工决策者的积极社会态度,并讨论了与使用与当前的AI政策和标准化举措相关的随机分类器相关的一些政策和实施问题。
translated by 谷歌翻译
Explainable AI (XAI) is widely viewed as a sine qua non for ever-expanding AI research. A better understanding of the needs of XAI users, as well as human-centered evaluations of explainable models are both a necessity and a challenge. In this paper, we explore how HCI and AI researchers conduct user studies in XAI applications based on a systematic literature review. After identifying and thoroughly analyzing 85 core papers with human-based XAI evaluations over the past five years, we categorize them along the measured characteristics of explanatory methods, namely trust, understanding, fairness, usability, and human-AI team performance. Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems than in others, but that user evaluations are still rather sparse and incorporate hardly any insights from cognitive or social sciences. Based on a comprehensive discussion of best practices, i.e., common models, design choices, and measures in user studies, we propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners. Lastly, this survey also highlights several open research directions, particularly linking psychological science and human-centered XAI.
translated by 谷歌翻译
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction, but the main LM benchmarks are non-interactive, where a system produces output without human intervention. To evaluate human-LM interaction, we develop a framework, Human-AI Language-based Interaction Evaluation (H-LINE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
translated by 谷歌翻译
We are currently unable to specify human goals and societal values in a way that reliably directs AI behavior. Law-making and legal interpretation form a computational engine that converts opaque human values into legible directives. "Law Informs Code" is the research agenda capturing complex computational legal processes, and embedding them in AI. Similar to how parties to a legal contract cannot foresee every potential contingency of their future relationship, and legislators cannot predict all the circumstances under which their proposed bills will be applied, we cannot ex ante specify rules that provably direct good AI behavior. Legal theory and practice have developed arrays of tools to address these specification problems. For instance, legal standards allow humans to develop shared understandings and adapt them to novel situations. In contrast to more prosaic uses of the law (e.g., as a deterrent of bad behavior through the threat of sanction), leveraged as an expression of how humans communicate their goals, and what society values, Law Informs Code. We describe how data generated by legal processes (methods of law-making, statutory interpretation, contract drafting, applications of legal standards, legal reasoning, etc.) can facilitate the robust specification of inherently vague human goals. This increases human-AI alignment and the local usefulness of AI. Toward society-AI alignment, we present a framework for understanding law as the applied philosophy of multi-agent alignment. Although law is partly a reflection of historically contingent political power - and thus not a perfect aggregation of citizen preferences - if properly parsed, its distillation offers the most legitimate computational comprehension of societal values available. If law eventually informs powerful AI, engaging in the deliberative political process to improve law takes on even more meaning.
translated by 谷歌翻译
Prior work has identified a resilient phenomenon that threatens the performance of human-AI decision-making teams: overreliance, when people agree with an AI, even when it is incorrect. Surprisingly, overreliance does not reduce when the AI produces explanations for its predictions, compared to only providing predictions. Some have argued that overreliance results from cognitive biases or uncalibrated trust, attributing overreliance to an inevitability of human cognition. By contrast, our paper argues that people strategically choose whether or not to engage with an AI explanation, demonstrating empirically that there are scenarios where AI explanations reduce overreliance. To achieve this, we formalize this strategic choice in a cost-benefit framework, where the costs and benefits of engaging with the task are weighed against the costs and benefits of relying on the AI. We manipulate the costs and benefits in a maze task, where participants collaborate with a simulated AI to find the exit of a maze. Through 5 studies (N = 731), we find that costs such as task difficulty (Study 1), explanation difficulty (Study 2, 3), and benefits such as monetary compensation (Study 4) affect overreliance. Finally, Study 5 adapts the Cognitive Effort Discounting paradigm to quantify the utility of different explanations, providing further support for our framework. Our results suggest that some of the null effects found in literature could be due in part to the explanation not sufficiently reducing the costs of verifying the AI's prediction.
translated by 谷歌翻译
尽管Ai在各个领域的超人表现,但人类往往不愿意采用AI系统。许多现代AI技术中缺乏可解释性的缺乏可令人伤害他们的采用,因为用户可能不相信他们不理解的决策过程的系统。我们通过一种新的实验调查这一主张,其中我们使用互动预测任务来分析可解释性和结果反馈对AI信任的影响和AI辅助预测任务的人类绩效。我们发现解释性导致了不强大的信任改进,而结果反馈具有明显更大且更可靠的效果。然而,这两个因素对参与者的任务表现产生了适度的影响。我们的研究结果表明(1)接受重大关注的因素,如可解释性,在越来越多的信任方面可能比其他结果反馈的因素效果,而(2)通过AI系统增强人类绩效可能不是在AI中增加信任的简单问题。 ,随着增加的信任并不总是与性能同样大的改进相关联。这些调查结果邀请了研究界不仅关注产生解释的方法,而且还专注于确保在实践中产生影响和表现的技巧。
translated by 谷歌翻译
最近的神经生成系统已经证明了程序性生成游戏内容,图像,故事等的潜力。但是,大多数神经生成算法是“不受控制的”,因为用户在最初的及时规范之外的创意决策中几乎没有发言权。共同创造性的混合定位系统需要以用户为中心的影响算法,尤其是当用户不太可能拥有机器学习专业知识时。共同创造系统的关键是能够从用户到代理以及从代理到用户传达想法和意图的能力。共同创造的AI中的关键问题包括:用户如何表达自己的创造意图? Creative AI系统如何传达他们的信念,解释他们的举动或指示用户代表他们采取行动? Creative AI系统何时应该采取主动?此类问题的答案以及更多的答案将使我们能够开发出更好的共同创造系统,从而使人类更有能力表达自己的创造意图。我们介绍了Creative-Wand,这是一个可定制的框架,用于调查共同创造的混合发电生成。 Creative-Wand可以将生成模型和人类代理通信渠道的插入式注射到基于聊天的接口中。它提供了许多维度,在共同创造过程中,AI发生器和人类可以进行交流。我们通过使用该框架来研究共同创造性通信全球广播的一个维度与本地创意意图通过讲故事的上下文来说明创意范围的框架。
translated by 谷歌翻译
人工智能算法越来越多地被公共机构作为决策助手,并承诺克服人类决策者的偏见。同时,他们可能会在人类算法中引入新的偏见。在心理学和公共行政文献上,我们调查了两个关键偏见:即使面对来自其他来源的警告信号(自动化偏见)的警告信号,对算法建议过度依赖,并选择性地采用算法建议时,这与刻板印象相对应(Selective Adherence)。我们通过在荷兰瓦中进行的三项实验研究评估这些研究,讨论了我们发现对公共部门决策在自动化时代的影响。总体而言,我们的研究表明,对已经脆弱和处境不利的公民自动化自动化的潜在负面影响。
translated by 谷歌翻译
机器学习的最新进展导致人们对可解释的AI(XAI)的兴趣越来越大,使人类能够深入了解机器学习模型的决策。尽管最近有这种兴趣,但XAI技术的实用性尚未在人机组合中得到特征。重要的是,XAI提供了增强团队情境意识(SA)和共享心理模型发展的希望,这是有效的人机团队的关键特征。快速开发这种心理模型在临时人机团队中尤其重要,因为代理商对他人的决策策略没有先验知识。在本文中,我们提出了两个新颖的人类受试者实验,以量化在人机组合场景中部署XAI技术的好处。首先,我们证明XAI技术可以支持SA($ P <0.05)$。其次,我们研究了通过协作AI政策抽象诱导的不同SA级别如何影响临时人机组合绩效。重要的是,我们发现XAI的好处不是普遍的,因为对人机团队的组成有很大的依赖。新手受益于XAI提供增加的SA($ P <0.05 $),但容易受到认知开销的影响($ P <0.05 $)。另一方面,专家性能随着基于XAI的支持($ p <0.05 $)而降低,这表明关注XAI的成本超过了从提供的其他信息中获得的收益以增强SA所获得的收益。我们的结果表明,研究人员必须通过仔细考虑人机团队组成以及XAI方法如何增强SA来故意在正确的情况下设计和部署正确的XAI技术。
translated by 谷歌翻译
在许多现实世界的背景下,成功的人类合作要求人类有效地将补充信息来源整合到AI信息的决策中。但是,实际上,人类决策者常常缺乏对AI模型与自己有关的信息的了解。关于如何有效沟通不可观察的指南,几乎没有可用的准则:可能影响结果但模型无法使用的功能。在这项工作中,我们进行了一项在线实验,以了解以及如何显式交流潜在相关的不可观念,从而影响人们在做出预测时如何整合模型输出和无法观察到的。我们的发现表明,提示有关不可观察的提示可以改变人类整合模型输出和不可观察的方式,但不一定会改善性能。此外,这些提示的影响可能会根据决策者的先前领域专业知识而有所不同。我们通过讨论对基于AI的决策支持工具的未来研究和设计的影响来结束。
translated by 谷歌翻译
人为决策的合作努力实现超出人类或人工智能表现的团队绩效。但是,许多因素都会影响人类团队的成功,包括用户的领域专业知识,AI系统的心理模型,对建议的信任等等。这项工作检查了用户与三种模拟算法模型的互动,所有这些模型都具有相似的精度,但对其真正的正面和真实负率进行了不同的调整。我们的研究检查了在非平凡的血管标签任务中的用户性能,参与者表明给定的血管是流动还是停滞。我们的结果表明,虽然AI-Assistant的建议可以帮助用户决策,但用户相对于AI的基线性能和AI错误类型的补充调整等因素会显着影响整体团队的整体绩效。新手用户有所改善,但不能达到AI的准确性。高度熟练的用户通常能够识别何时应遵循AI建议,并通常保持或提高其性能。与AI相似的准确性水平的表演者在AI建议方面是最大的变化。此外,我们发现用户对AI的性能亲戚的看法也对给出AI建议时的准确性是否有所提高产生重大影响。这项工作提供了有关与人类协作有关的因素的复杂性的见解,并提供了有关如何开发以人为中心的AI算法来补充用户在决策任务中的建议。
translated by 谷歌翻译
人类不断受到他人的行为和观点的影响。至关重要的是,人类之间的社会影响是由互惠构成的:我们更多地遵循一直在考虑我们意见的人的建议。在当前的工作中,我们研究了与社会类人机器人互动时相互影响的影响是否可以出现。在一项联合任务中,人类参与者和人形机器人进行了感知估计,然后在观察伴侣的判断后可以公开修改它们。结果表明,赋予机器人表达和调节其对人类判断的易感水平的能力代表了双刃剑。一方面,当机器人遵循他们的建议时,参与者对机器人的能力失去了信心。另一方面,参与者不愿透露他们对易感机器人缺乏信心,这表明出现了支持人类机器人合作的社会影响力的相互机制。
translated by 谷歌翻译
将计算机性能与人类进行比较的图灵测试是众所周知的,但是令人惊讶的是,没有广泛使用的测试可以比较单独相对于人类,单独的计算机或其他基线的人类计算机系统的表现更好。在这里,我们展示了如何使用均值之比作为效果大小的量度进行此类测试。然后,我们以三种方式演示了该测试的使用。首先,在对最近发表的79个实验结果的分析中,我们发现,令人惊讶的是,超过一半的研究发现性能下降,均值和中位数提高的比率均约为1个(完全没有改进),最大比率为1.36(改善36%)。其次,当100名人类程序员使用GPT-3生成软件时,我们是否会获得更高的性能提高比,这是一个较大的,最先进的AI系统。在这种情况下,我们发现速度提高比为1.27(增长27%)。最后,我们发现使用GPT-3的50名非编程者可以执行与人类程序员相比,而且额外付费且额外的任务。在这种情况下,非程序员和计算机都无法单独执行任务,因此这是人类计算机协同作用非常强烈的一个例子。
translated by 谷歌翻译
我们介绍了Sparrow,这是一个寻求信息的对话代理,与提示的语言模型基线相比,训练有素,更有帮助,正确和无害。我们使用从人类反馈中的强化学习来培训我们的模型,以帮助人类评估者判断代理人的行为。首先,为了使我们的代理人更有帮助和无害,我们将良好对话的要求分解为代理人应遵循的自然语言规则,并分别向评估者询问每个规则。我们证明,这种崩溃使我们能够收集对代理行为的更多针对性的人类判断,并允许更有效的规则条件奖励模型。其次,我们的代理商在收集对模型声明的偏好判决时提供了支持事实主张的来源的证据。对于事实问题,麻雀提供的证据支持了78%的时间。比基线比基线更享受麻雀,同时对人类的对抗性探测更具弹性,在探测时只有8%的时间违反了我们的规则。最后,我们进行了广泛的分析,表明尽管我们的模型学会遵守我们的规则,但它可以表现出分布偏见。
translated by 谷歌翻译
我们建议并探讨可以将语言模型作为社会科学研究中特定人类亚人群的有效代理进行研究的可能性。人工智能工具的实践和研究应用有时受到有问题的偏见(例如种族主义或性别歧视)的限制,这些偏见通常被视为模型的统一特性。我们表明,一个这样的工具中的“算法偏见”(GPT-3语言模型)既是细粒度又是人口统计相关的,这意味着适当的条件会导致其准确地仿真来自各种人类的响应分布亚组。我们将此属性称为“算法忠诚度”,并在GPT-3中探索其范围。我们通过将模型调节在美国进行的多项大型调查中的数千个社会人口统计背景故事中调节,从而创建“硅样本”。然后,我们比较硅和人类样品,以证明GPT-3中包含的信息远远超出了表面相似性。它是细微的,多方面的,并反映了特征人类态度的思想,态度和社会文化背景之间的复杂相互作用。我们建议,具有足够算法的忠诚度的语言模型构成了一种新颖而有力的工具,可以促进各种学科的人类和社会的理解。
translated by 谷歌翻译
事实证明,在学习环境中,社会智能代理(SIA)的部署在不同的应用领域具有多个优势。社会代理创作工具使场景设计师能够创造出对SIAS行为的高度控制的量身定制体验,但是,另一方面,这是有代价的,因为该方案及其创作的复杂性可能变得霸道。在本文中,我们介绍了可解释的社会代理创作工具的概念,目的是分析社会代理的创作工具是否可以理解和解释。为此,我们检查了创作工具Fatima-Toolkit是否可以理解,并且从作者的角度来看,其创作步骤可以解释。我们进行了两项用户研究,以定量评估Fatima-Toolkit的解释性,可理解性和透明度,从场景设计师的角度来看。关键发现之一是,法蒂玛 - 库尔基特(Fatima-Toolkit)的概念模型通常是可以理解的,但是基于情感的概念并不那么容易理解和使用。尽管关于Fatima-Toolkit的解释性有一些积极的方面,但仍需要取得进展,以实现完全可以解释的社会代理商创作工具。我们提供一组关键概念和可能的解决方案,可以指导开发人员构建此类工具。
translated by 谷歌翻译
人机互动和博弈论在相对隔离中,在彼此相对隔离三十年来发展了不同的信任理论。人机互动专注于信任模型的潜在尺寸,层,相关性和前一种,而游戏理论集中在奇异信任决策背后的心理学和策略。这两个领域都努力了解过度信任和信任校准,以及如何衡量信任期望,风险和脆弱性。本文介绍了关闭这些字段之间的差距的初始步骤。使用相互依存理论和社会心理学的见解和实验结果,这项工作开始分析大型游戏理论竞争数据集,以证明各种人类信任交互的最强预测因子是承诺和信任的相互依存导出的变量我们开发了。然后,它提出了对人类主题的第二次研究,以获得更现实的信任情景,涉及人类和人机信任。在竞争数据和我们的实验数据中,我们证明了相互依存的指标更好地捕获了博弈论所提出的理性或规范性心理推理的社会“超级”。这项工作进一步探讨了相互依存的理论 - 以其对承诺,胁迫和合作的关注 - 解决了人机信托内的许多拟议的基础构建和前所,在机器人取代人类时缩小了新的光线的关键相似之处和差异在信任互动中。
translated by 谷歌翻译