通过将元学习纳入基于区域的检测框架中,很少有射击对象检测经过广泛的研究。尽管取得了成功,但所述范式仍然受到几个因素的限制,例如(i)新型类别的低质量区域建议以及(ii)不同类别之间的类间相关性的过失。这种限制阻碍了基础知识的概括,以检测新型级别对象。在这项工作中,我们设计了元数据,(i)是第一个图像级的少量检测器,(ii)引入了一种新颖的类间相关元学习策略,以捕获和利用不同类别之间的相关性的相关性稳健而准确的几个射击对象检测。 meta-detr完全在图像级别工作,没有任何区域建议,这规避了普遍的几杆检测框架中不准确的建议的约束。此外,引入的相关元学习使元数据能够同时参加单个进料中的多个支持类别,从而可以捕获不同类别之间的类间相关性,从而大大降低了相似类别的错误分类并增强知识概括性参加新颖的课程。对多个射击对象检测基准进行的实验表明,所提出的元元删除优于大幅度的最先进方法。实施代码可在https://github.com/zhanggongjie/meta-detr上获得。
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Conventional training of a deep CNN based object detector demands a large number of bounding box annotations, which may be unavailable for rare categories. In this work we develop a few-shot object detector that can learn to detect novel objects from only a few annotated examples. Our proposed model leverages fully labeled base classes and quickly adapts to novel classes, using a meta feature learner and a reweighting module within a one-stage detection architecture. The feature learner extracts meta features that are generalizable to detect novel object classes, using training data from base classes with sufficient samples. The reweighting module transforms a few support examples from the novel classes to a global vector that indicates the importance or relevance of meta features for detecting the corresponding objects. These two modules, together with a detection prediction module, are trained end-to-end based on an episodic few-shot learning scheme and a carefully designed loss function. Through extensive experiments we demonstrate that our model outperforms well-established baselines by a large margin for few-shot object detection, on multiple datasets and settings. We also present analysis on various aspects of our proposed model, aiming to provide some inspiration for future few-shot detection works.
translated by 谷歌翻译
标记数据通常昂贵且耗时,特别是对于诸如对象检测和实例分割之类的任务,这需要对图像的密集标签进行密集的标签。虽然几张拍摄对象检测是关于培训小说中的模型(看不见的)对象类具有很少的数据,但它仍然需要在许多标记的基础(见)类的课程上进行训练。另一方面,自我监督的方法旨在从未标记数据学习的学习表示,该数据转移到诸如物体检测的下游任务。结合几次射击和自我监督的物体检测是一个有前途的研究方向。在本调查中,我们审查并表征了几次射击和自我监督对象检测的最新方法。然后,我们给我们的主要外卖,并讨论未来的研究方向。https://gabrielhuang.github.io/fsod-survey/的项目页面
translated by 谷歌翻译
最近对物体检测的自我监督预防方法在很大程度上专注于预先绘制物体探测器的骨干,忽略了检测架构的关键部分。相反,我们介绍了DetReg,这是一种新的自我监督方法,用于预先列出整个对象检测网络,包括对象本地化和嵌入组件。在预先绘制期间,DetReg预测对象本地化以与无监督区域提议生成器匹配本地化,并同时将相应的特征嵌入与自我监控图像编码器的嵌入式对齐。我们使用DETR系列探测器实施DetReg,并显示它在Coco,Pascal VOC和空中客车船基准上的Fineetuned时改善了竞争性基线。在低数据制度中,包括半监督和几秒钟学习设置,DetReg建立了许多最先进的结果,例如,在Coco上,我们看到10次检测和+3.5的AP改进A +6.0 AP改进当培训只有1%的标签时。对于代码和预用模型,请访问https://amirbar.net/detreg的项目页面
translated by 谷歌翻译
Open-vocabulary object detection, which is concerned with the problem of detecting novel objects guided by natural language, has gained increasing attention from the community. Ideally, we would like to extend an open-vocabulary detector such that it can produce bounding box predictions based on user inputs in form of either natural language or exemplar image. This offers great flexibility and user experience for human-computer interaction. To this end, we propose a novel open-vocabulary detector based on DETR -- hence the name OV-DETR -- which, once trained, can detect any object given its class name or an exemplar image. The biggest challenge of turning DETR into an open-vocabulary detector is that it is impossible to calculate the classification cost matrix of novel classes without access to their labeled images. To overcome this challenge, we formulate the learning objective as a binary matching one between input queries (class name or exemplar image) and the corresponding objects, which learns useful correspondence to generalize to unseen queries during testing. For training, we choose to condition the Transformer decoder on the input embeddings obtained from a pre-trained vision-language model like CLIP, in order to enable matching for both text and image queries. With extensive experiments on LVIS and COCO datasets, we demonstrate that our OV-DETR -- the first end-to-end Transformer-based open-vocabulary detector -- achieves non-trivial improvements over current state of the arts.
translated by 谷歌翻译
由于元学习策略的成功,几次对象检测迅速进展。然而,现有方法中的微调阶段的要求是时间分子,并且显着阻碍了其在实时应用中的使用,例如对低功耗机器人的自主勘探。为了解决这个问题,我们展示了一个全新的架构,Airdet,它通过学习级别与支持图像的无政府主义关系没有微调。具体地,我们提出了一种支持引导的串级(SCS)特征融合网络来生成对象提案,用于拍摄聚合的全局本地关系网络(GLR),以及基于关系的基本嵌入网络(R-PEN),用于精确本土化。令人惊讶的是,在Coco和Pascal VOC数据集上进行详尽的实验,旨在达到比详尽的Fineetuned方法相当或更好的结果,达到基线的提高高达40-60%。为了我们的兴奋,Airdet在多尺度对象,尤其是小型物体上获得有利性能。此外,我们提出了来自DARPA地下挑战的实际勘探测试的评估结果,这强烈验证了机器人中AIRDET的可行性。将公开源代码,预先训练的模型以及真实世界的勘探数据。
translated by 谷歌翻译
即使在几个例子中,人类能够学会识别新物品。相比之下,培训基于深度学习的对象探测器需要大量的注释数据。为避免需求获取和注释这些大量数据,但很少拍摄的对象检测旨在从目标域中的新类别的少数对象实例中学习。在本调查中,我们在几次拍摄对象检测中概述了本领域的状态。我们根据培训方案和建筑布局分类方法。对于每种类型的方法,我们描述了一般的实现以及提高新型类别性能的概念。在适当的情况下,我们在这些概念上给出短暂的外卖,以突出最好的想法。最终,我们介绍了常用的数据集及其评估协议,并分析了报告的基准结果。因此,我们强调了评估中的共同挑战,并确定了这种新兴对象检测领域中最有前景的电流趋势。
translated by 谷歌翻译
对象检测是计算机视觉和图像处理中的基本任务。基于深度学习的对象探测器非常成功,具有丰富的标记数据。但在现实生活中,它不保证每个对象类别都有足够的标记样本进行培训。当训练数据有限时,这些大型物体探测器易于过度装备。因此,有必要将几次拍摄的学习和零射击学习引入对象检测,这可以将低镜头对象检测命名在一起。低曝光对象检测(LSOD)旨在检测来自少数甚至零标记数据的对象,其分别可以分为几次对象检测(FSOD)和零拍摄对象检测(ZSD)。本文对基于深度学习的FSOD和ZSD进行了全面的调查。首先,本调查将FSOD和ZSD的方法分类为不同的类别,并讨论了它们的利弊。其次,本调查审查了数据集设置和FSOD和ZSD的评估指标,然后分析了在这些基准上的不同方法的性能。最后,本调查讨论了FSOD和ZSD的未来挑战和有希望的方向。
translated by 谷歌翻译
最近提出的检测变压器(DETR)已建立了一个完全端到端的范式以进行对象检测。但是,DETR遭受慢训练的融合,这阻碍了其对各种检测任务的适用性。我们观察到,由于对象查询和编码图像特征之间的语义不一致,DETR的缓慢收敛在很大程度上归因于将对象查询与相关区域匹配的困难。通过此观察,我们设计了与DETR ++(SAM-DETR ++)设计的语义对齐匹配,以加速DETR的收敛并改善检测性能。 SAM-DETR ++的核心是一个插件模块,该模块将对象查询和编码图像功能投射到相同的功能嵌入空间中,在该空间中,每个对象查询都可以轻松地与具有相似语义的相关区域匹配。此外,SAM-DETR ++搜索了多个代表性关键点,并利用其功能以具有增强的表示能力的语义对齐匹配。此外,SAM-DETR ++可以根据设计的语义对准匹配,以粗到5的方式有效地融合多尺度特征。广泛的实验表明,所提出的SAM-DETR ++实现了优越的收敛速度和竞争性检测准确性。此外,作为一种插件方法,SAM-DETR ++可以以更好的性能补充现有的DITR收敛解决方案,仅使用12个训练时代获得44.8%的AP和49.1%的AP,并使用Resnet-50上的CoCo Val2017上的50个训练时代获得50个训练时期。代码可在https://github.com/zhanggongjie/sam-detr上找到。
translated by 谷歌翻译
少量对象检测(FSOD)旨在仅使用几个例子来检测对象。如何将最先进的对象探测器适应几个拍摄域保持挑战性。对象提案是现代物体探测器中的关键成分。然而,使用现有方法对于几张拍摄类生成的提案质量远远差,而不是许多拍摄类,例如,由于错误分类或不准确的空间位置而导致的少量拍摄类丢失的框。为了解决嘈杂的提案问题,我们通过联合优化几次提案生成和细粒度的少量提案分类,提出了一种新的Meta学习的FSOD模型。为了提高几张拍摄类的提议生成,我们建议学习基于轻量级的公制学习的原型匹配网络,而不是传统的简单线性对象/非目标分类器,例如,在RPN中使用。我们具有特征融合网络的非线性分类器可以提高鉴别性原型匹配和少拍摄类的提案回忆。为了提高细粒度的少量提案分类,我们提出了一种新的细节特征对准方法,以解决嘈杂的提案和少量拍摄类之间的空间未对准,从而提高了几次对象检测的性能。同时,我们学习一个单独的R-CNN检测头,用于多射击基础类,并表现出维护基础课程知识的强大性能。我们的模型在大多数射击和指标上实现了多个FSOD基准的最先进的性能。
translated by 谷歌翻译
多尺度功能已被证明在对象检测方面非常有效,大多数基于Convnet的对象检测器采用特征金字塔网络(FPN)作为利用多尺度功能的基本组件。但是,对于最近提出的基于变压器的对象探测器,直接结合多尺度功能会导致由于处理高分辨率特征的注意机制的高复杂性,因此导致了高度的计算开销。本文介绍了迭代多尺度特征聚合(IMFA) - 一种通用范式,可有效利用基于变压器的对象检测器中的多尺度特征。核心想法是从仅几个关键位置利用稀疏的多尺度特征,并且通过两种新颖的设计实现了稀疏的特征。首先,IMFA重新安排变压器编码器数据管道,因此可以根据检测预测进行迭代更新编码的功能。其次,在先前检测预测的指导下,IMFA稀疏的量表自适应特征可从几个关键点位置进行精制检测。结果,采样的多尺度特征稀疏,但仍然对对象检测非常有益。广泛的实验表明,提出的IMFA在略有计算开销的情况下显着提高了基于变压器的对象检测器的性能。项目页面:https://github.com/zhanggongjie/imfa。
translated by 谷歌翻译
几乎没有射击的对象检测(FSOD)旨在对新类别的几幅图像进行分类和检测。现有的元学习方法由于结构限制而在支持和查询图像之间的功能不足。我们提出了一个层次的注意网络,该网络具有依次大的接收场,以充分利用查询和支持图像。此外,元学习不能很好地区分类别,因为它决定了支持和查询图像是否匹配。换句话说,基于度量的分类学习是无效的,因为它不直接起作用。因此,我们提出了一种称为元对抗性学习的对比学习方法,该方法直接有助于实现元学习策略的目的。最后,我们通过实现明显的利润来建立一个新的最新网络。我们的方法带来了2.3、1.0、1.3、3.4和2.4 \%\%\%AP的改进,可在可可数据集上进行1-30张对象检测。我们的代码可在以下网址找到:https://github.com/infinity7428/hanmcl
translated by 谷歌翻译
少量对象检测(FSOD)旨在使用少数示例来检测从未见过的对象。通过学习如何在查询图像和少量拍摄类示例之间进行匹配,因此可以通过学习如何匹配来实现最近的改进,使得学习模型可以概括为几滴新颖的类。然而,目前,大多数基于元学习的方法分别在查询图像区域(通常是提议)和新颖类之间执行成对匹配,因此无法考虑它们之间的多个关系。在本文中,我们使用异构图卷积网络提出了一种新颖的FSOD模型。通过具有三种不同类型的边缘的所有提议和类节点之间的有效消息,我们可以获得每个类的上下文感知提案功能和查询 - 自适应,多包子增强型原型表示,这可能有助于促进成对匹配和改进的最终决赛FSOD精度。广泛的实验结果表明,我们所提出的模型表示为QA的Qa-Netwet,优于不同拍摄和评估指标下的Pascal VOC和MSCOCO FSOD基准测试的当前最先进的方法。
translated by 谷歌翻译
少量对象检测(FSOD)是计算机视觉中快速生长的领域。它包括查找给定的一组类的所有出现,只有每个类的少数注释的示例。已经提出了许多方法来解决这一挑战,其中大部分是基于注意机制。然而,各种经典对象检测框架和培训策略使方法之间的性能比较困难。特别是对于基于关注的FSOD方法,比较不同关注机制对性能的影响是费力的。本文旨在填补这种缺点。为此,提出了一种灵活的框架,以允许实施文献中可用的大部分注意技术。要正确介绍这样的框架,首先提供了对现有FSOD方法的详细审查。然后在框架内重新实现一些不同的关注机制,并与固定的所有其他参数进行比较。
translated by 谷歌翻译
Most existing 3D point cloud object detection approaches heavily rely on large amounts of labeled training data. However, the labeling process is costly and time-consuming. This paper considers few-shot 3D point cloud object detection, where only a few annotated samples of novel classes are needed with abundant samples of base classes. To this end, we propose Prototypical VoteNet to recognize and localize novel instances, which incorporates two new modules: Prototypical Vote Module (PVM) and Prototypical Head Module (PHM). Specifically, as the 3D basic geometric structures can be shared among categories, PVM is designed to leverage class-agnostic geometric prototypes, which are learned from base classes, to refine local features of novel categories.Then PHM is proposed to utilize class prototypes to enhance the global feature of each object, facilitating subsequent object localization and classification, which is trained by the episodic training strategy. To evaluate the model in this new setting, we contribute two new benchmark datasets, FS-ScanNet and FS-SUNRGBD. We conduct extensive experiments to demonstrate the effectiveness of Prototypical VoteNet, and our proposed method shows significant and consistent improvements compared to baselines on two benchmark datasets.
translated by 谷歌翻译
Few-shot object detection (FSOD), which aims at learning a generic detector that can adapt to unseen tasks with scarce training samples, has witnessed consistent improvement recently. However, most existing methods ignore the efficiency issues, e.g., high computational complexity and slow adaptation speed. Notably, efficiency has become an increasingly important evaluation metric for few-shot techniques due to an emerging trend toward embedded AI. To this end, we present an efficient pretrain-transfer framework (PTF) baseline with no computational increment, which achieves comparable results with previous state-of-the-art (SOTA) methods. Upon this baseline, we devise an initializer named knowledge inheritance (KI) to reliably initialize the novel weights for the box classifier, which effectively facilitates the knowledge transfer process and boosts the adaptation speed. Within the KI initializer, we propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights. Finally, our approach not only achieves the SOTA results across three public benchmarks, i.e., PASCAL VOC, COCO and LVIS, but also exhibits high efficiency with 1.8-100x faster adaptation speed against the other methods on COCO/LVIS benchmark during few-shot transfer. To our best knowledge, this is the first work to consider the efficiency problem in FSOD. We hope to motivate a trend toward powerful yet efficient few-shot technique development. The codes are publicly available at https://github.com/Ze-Yang/Efficient-FSOD.
translated by 谷歌翻译
Open world object detection aims at detecting objects that are absent in the object classes of the training data as unknown objects without explicit supervision. Furthermore, the exact classes of the unknown objects must be identified without catastrophic forgetting of the previous known classes when the corresponding annotations of unknown objects are given incrementally. In this paper, we propose a two-stage training approach named Open World DETR for open world object detection based on Deformable DETR. In the first stage, we pre-train a model on the current annotated data to detect objects from the current known classes, and concurrently train an additional binary classifier to classify predictions into foreground or background classes. This helps the model to build an unbiased feature representations that can facilitate the detection of unknown classes in subsequent process. In the second stage, we fine-tune the class-specific components of the model with a multi-view self-labeling strategy and a consistency constraint. Furthermore, we alleviate catastrophic forgetting when the annotations of the unknown classes becomes available incrementally by using knowledge distillation and exemplar replay. Experimental results on PASCAL VOC and MS-COCO show that our proposed method outperforms other state-of-the-art open world object detection methods by a large margin.
translated by 谷歌翻译
在本文中,我们提出了简单的关注机制,我们称之为箱子。它可以实现网格特征之间的空间交互,从感兴趣的框中采样,并提高变压器的学习能力,以获得几个视觉任务。具体而言,我们呈现拳击手,短暂的框变压器,通过从输入特征映射上的参考窗口预测其转换来参加一组框。通过考虑其网格结构,拳击手通过考虑其网格结构来计算这些框的注意力。值得注意的是,Boxer-2D自然有关于其注意模块内容信息的框信息的原因,使其适用于端到端实例检测和分段任务。通过在盒注意模块中旋转的旋转的不变性,Boxer-3D能够从用于3D端到端对象检测的鸟瞰图平面产生识别信息。我们的实验表明,拟议的拳击手-2D在Coco检测中实现了更好的结果,并且在Coco实例分割上具有良好的和高度优化的掩模R-CNN可比性。 Boxer-3D已经为Waymo开放的车辆类别提供了令人信服的性能,而无需任何特定的类优化。代码将被释放。
translated by 谷歌翻译
我们介绍了几次视频对象检测(FSVOD),在我们的高度多样化和充满活力的世界中为视觉学习提供了三个贡献:1)大规模视频数据集FSVOD-500,其中包括每个类别中的500个类别,其中少数 - 学习;2)一种新型管建议网络(TPN),用于为目标视频对象聚合特征表示来生成高质量的视频管建议,这是一种可以高度动态的目标。3)一种策略性地改进的时间匹配网络(TMN +),用于匹配具有更好辨别能力的代表查询管特征,从而实现更高的多样性。我们的TPN和TMN +共同和端到端训练。广泛的实验表明,与基于图像的方法和其他基于视频的扩展相比,我们的方法在两个镜头视频对象检测数据集中产生显着更好的检测结果。代码和数据集将在https://github.com/fanq15/fewx释放。
translated by 谷歌翻译