总生存时间(OS)时间是神经胶质瘤情况最重要的评估指数之一。多模式磁共振成像(MRI)扫描在神经胶质瘤预后OS时间的研究中起重要作用。为多模式MRI问题的OS时间预测提出了几种基于学习的方法。但是,这些方法通常在深度学习网络开始或结束时融合多模式信息,并且缺乏来自不同尺度的特征。此外,网络末尾的融合始终适应全球(例如,在全球平均池输出串联后完全连接)或与局部(例如,双线性池)的融合,这会失去与全球局部的局部信息。在本文中,我们提出了一种用于对脑肿瘤患者的多模式OS时间预测的新方法,该方法包含在不同尺度上引入的改进的非局部特征融合模块。我们的方法比当前最新方法获得了相对8.76%的改善(0.6989 vs. 0.6426的精度)。广泛的测试表明,我们的方法可以适应缺失方式的情况。该代码可在https://github.com/tangwen920812/mmmna-net上找到。
translated by 谷歌翻译
多模式MR成像通常用于临床实践中,以通过提供丰富的互补信息来诊断和研究脑肿瘤。以前的多模式MRI分割方法通常通过在网络的早期/中阶段连接多模式MRIS来执行模态融合,这几乎无法探索模态之间的非线性依赖性。在这项工作中,我们提出了一种新型的嵌套模态感知变压器(嵌套形式),以明确探索多模式MRIS在脑肿瘤分割中的模式内和模式间关系。我们建立在基于变压器的多模型和单一码头结构的基础上,我们对不同模式的高级表示进行嵌套的多模式融合,并在较低的尺度上应用对模态敏感的门控(MSG),以进行更有效的跳过连接。具体而言,多模式融合是在我们提出的嵌套模态感知特征聚合(NMAFA)模块中进行的,该模块通过三个方向的空间意见变压器增强了单个模态内的长期依赖性,并进一步补充了模态信息之间的关键情境信息。通过跨模式注意变压器。关于BRATS2020基准和私人脑膜瘤细分(Maniseg)数据集的广泛实验表明,嵌套形式显然比最先进的表现优于最先进的。该代码可从https://github.com/920232796/nestedformer获得。
translated by 谷歌翻译
在多模式分割领域中,可以考虑不同方式之间的相关性以改善分段结果。考虑到不同MR模型之间的相关性,在本文中,我们提出了一种由新型三关注融合引导的多模态分段网络。我们的网络包括与N个图像源,三关注融合块,双关注融合块和解码路径的N个独立于模型编码路径。独立编码路径的模型可以从n个模式捕获模态特征。考虑到从编码器中提取的所有功能都非常有用,我们建议使用基于双重的融合来重量沿模态和空间路径的特征,可以抑制更少的信息特征,并强调每个模态的有用的功能在不同的位置。由于不同模式之间存在强烈的相关性,基于双重关注融合块,我们提出了一种相关注意模块来形成三关注融合块。在相关性注意模块中,首先使用相关描述块来学习模态之间的相关性,然后基于相关性的约束来指导网络以学习对分段更相关的潜在相关特征。最后,通过解码器投影所获得的融合特征表示以获得分段结果。我们对Brats 2018年脑肿瘤分割进行测试的实验结果证明了我们提出的方法的有效性。
translated by 谷歌翻译
医生经常基于患者的图像扫描,例如磁共振成像(MRI),以及患者的电子健康记录(EHR),如年龄,性别,血压等。尽管在计算机视觉或自然语言研究领域的图像或文本分析中提出了大量的自动方法,但已经为医学图像的融合和医疗问题的EHR数据进行了更少的研究。在现有的早期或中间融合方法中,两种方式的特征串联仍然是一个主流。为了更好地利用图像和EHR数据,我们提出了一种多模态注意力模块,该模块使用EHR数据来帮助选择传统CNN的图像特征提取过程期间的重要区域。此外,我们建议将多头Machnib纳入门控多媒体单元(GMU),使其能够在不同子空间中平行熔断图像和EHR特征。在两个模块的帮助下,可以使用两个模态增强现有的CNN架构。预测脑内出血患者的Glasgow结果规模(GOS)和分类Alzheimer病的实验表明,该方法可以自动关注任务相关领域,并通过更好地利用图像和EHR功能来实现更好的结果。
translated by 谷歌翻译
目的:多发性硬化症(MS)是一种自身免疫和脱髓鞘疾病,导致中枢神经系统的病变。可以使用磁共振成像(MRI)跟踪和诊断该疾病。到目前为止,多数多层自动生物医学方法用于在成本,时间和可用性方面对患者没有有益的病变。本文的作者提出了一种使用只有一个模态(Flair Image)的方法,准确地将MS病变分段。方法:由3D-Reset和空间通道注意模块进行设计,灵活的基于补丁的卷积神经网络(CNN),以段MS病变。该方法由三个阶段组成:(1)对比度限制自适应直方图均衡(CLAHE)被施加到原始图像并连接到提取的边缘以形成4D图像; (2)尺寸80 * 80 * 80 * 2的贴片从4D图像中随机选择; (3)将提取的贴片传递到用于分割病变的关注的CNN中。最后,将所提出的方法与先前的相同数据集进行比较。结果:目前的研究评估了模型,具有测试集的ISIB挑战数据。实验结果表明,该方法在骰子相似性和绝对体积差方面显着超越了现有方法,而该方法仅使用一种模态(Flair)来分割病变。结论:作者推出了一种自动化的方法来分割基于最多两种方式作为输入的损伤。所提出的架构由卷积,解卷积和SCA-VOXRES模块作为注意模块组成。结果表明,所提出的方法优于与其他方法相比良好。
translated by 谷歌翻译
脑肿瘤分割是医学图像分析中最具挑战性问题之一。脑肿瘤细分的目标是产生准确描绘脑肿瘤区域。近年来,深入学习方法在解决各种计算机视觉问题时表现出了有希望的性能,例如图像分类,对象检测和语义分割。基于深度学习的方法已经应用于脑肿瘤细分并取得了有希望的结果。考虑到最先进技术所制作的显着突破,我们使用本调查来提供最近开发的深层学习脑肿瘤分割技术的全面研究。在本次调查中选择并讨论了100多篇科学论文,广泛地涵盖了网络架构设计,在不平衡条件下的细分等技术方面,以及多种方式流程。我们还为未来的发展方向提供了富有洞察力的讨论。
translated by 谷歌翻译
磁共振图像(MRI)中的脑肿瘤分割(BTS)对于脑肿瘤诊断,癌症管理和研究目的至关重要。随着十年小型挑战的巨大成功以及CNN和Transformer算法的进步,已经提出了许多出色的BTS模型来解决BTS在不同技术方面的困难。但是,现有研究几乎没有考虑如何以合理的方式融合多模式图像。在本文中,我们利用了放射科医生如何从多种MRI模态诊断脑肿瘤的临床知识,并提出了一种称为CKD-TRANSBTS的临床知识驱动的脑肿瘤分割模型。我们没有直接串联所有模式,而是通过根据MRI的成像原理将输入方式分为两组来重新组织输入方式。具有拟议模态相关的跨意义块(MCCA)的双支支混合式编码器旨在提取多模式图像特征。所提出的模型以局部特征表示能力的能力来继承来自变压器和CNN的强度,以提供精确的病变边界和3D体积图像的远程特征提取。为了弥合变压器和CNN功能之间的间隙,我们提出了解码器中的反式和CNN功能校准块(TCFC)。我们将提出的模型与五个基于CNN的模型和六个基于Transformer的模型在Brats 2021挑战数据集上进行了比较。广泛的实验表明,与所有竞争对手相比,所提出的模型可实现最先进的脑肿瘤分割性能。
translated by 谷歌翻译
使用多模式磁共振成像(MRI)对于精确的脑肿瘤细分是必需的。主要问题是,并非所有类型的MRI都始终可以在临床考试中提供。基于同一患者的先生模式之间存在强烈相关性,在这项工作中,我们提出了一种缺少一个或多种方式的脑肿瘤分割网络。所提出的网络由三个子网组成:特征增强的生成器,相关约束块和分割网络。特征增强的生成器利用可用模态来生成表示缺少模态的3D特征增强图像。相关性约束块可以利用模态之间的多源相关性,并且还限制了发电机,以合成特征增强的模态,该特征增强的模态必须具有与可用模式具有相干相关性的特征增强的模态。分段网络是基于多编码器的U-Net,以实现最终的脑肿瘤分割。所提出的方法在Brats 2018数据集上进行评估。实验结果表明,拟议方法的有效性分别在全肿瘤,肿瘤核心和增强肿瘤上实现了82.9,74.9和59.1的平均骰子得分,并且优于3.5%,17%和18.2的最佳方法%。
translated by 谷歌翻译
整合跨部门多模式数据(例如,放射学,病理学,基因组和临床数据)无处不在,在脑癌诊断和存活预测中无处不在。迄今为止,这种整合通常是由人类医师(以及专家小组)进行的,可以是主观的和半定量的。然而,多模式深度学习的最新进展已为利用这种过程以更加客观和定量的方式打开了一扇门。不幸的是,先前在脑癌生存预测上使用四种模式的艺术受到“完整模式”设置的限制(即,所有可用方式)。因此,关于如何有效预测脑癌生存的问题仍然存在开放性问题,从放射学,病理学,基因组和人口统计学数据中(例如,可能无法为患者收集一种或多种方式)。例如,我们是否应该同时使用完整和不完整的数据,更重要的是,如何使用这些数据?为了回答前面的问题,我们将跨部门多模式数据的多模式学习推广到缺失的数据设置。我们的贡献是三个方面:1)我们引入了最佳的多模式学习,其中缺少数据(MMD)管道具有优化的硬件消耗和计算效率; 2)我们将有关放射学,病理,基因组和人口统计学数据的多模式学习扩展到缺失的数据情景; 3)收集了一个大规模的公共数据集(有962名患者),以系统地评估胶质瘤肿瘤存活预测。所提出的方法将生存预测的C索引从0.7624提高到0.8053。
translated by 谷歌翻译
Achieving accurate and automated tumor segmentation plays an important role in both clinical practice and radiomics research. Segmentation in medicine is now often performed manually by experts, which is a laborious, expensive and error-prone task. Manual annotation relies heavily on the experience and knowledge of these experts. In addition, there is much intra- and interobserver variation. Therefore, it is of great significance to develop a method that can automatically segment tumor target regions. In this paper, we propose a deep learning segmentation method based on multimodal positron emission tomography-computed tomography (PET-CT), which combines the high sensitivity of PET and the precise anatomical information of CT. We design an improved spatial attention network(ISA-Net) to increase the accuracy of PET or CT in detecting tumors, which uses multi-scale convolution operation to extract feature information and can highlight the tumor region location information and suppress the non-tumor region location information. In addition, our network uses dual-channel inputs in the coding stage and fuses them in the decoding stage, which can take advantage of the differences and complementarities between PET and CT. We validated the proposed ISA-Net method on two clinical datasets, a soft tissue sarcoma(STS) and a head and neck tumor(HECKTOR) dataset, and compared with other attention methods for tumor segmentation. The DSC score of 0.8378 on STS dataset and 0.8076 on HECKTOR dataset show that ISA-Net method achieves better segmentation performance and has better generalization. Conclusions: The method proposed in this paper is based on multi-modal medical image tumor segmentation, which can effectively utilize the difference and complementarity of different modes. The method can also be applied to other multi-modal data or single-modal data by proper adjustment.
translated by 谷歌翻译
Cross-modality magnetic resonance (MR) image synthesis aims to produce missing modalities from existing ones. Currently, several methods based on deep neural networks have been developed using both source- and target-modalities in a supervised learning manner. However, it remains challenging to obtain a large amount of completely paired multi-modal training data, which inhibits the effectiveness of existing methods. In this paper, we propose a novel Self-supervised Learning-based Multi-scale Transformer Network (SLMT-Net) for cross-modality MR image synthesis, consisting of two stages, \ie, a pre-training stage and a fine-tuning stage. During the pre-training stage, we propose an Edge-preserving Masked AutoEncoder (Edge-MAE), which preserves the contextual and edge information by simultaneously conducting the image reconstruction and the edge generation. Besides, a patch-wise loss is proposed to treat the input patches differently regarding their reconstruction difficulty, by measuring the difference between the reconstructed image and the ground-truth. In this case, our Edge-MAE can fully leverage a large amount of unpaired multi-modal data to learn effective feature representations. During the fine-tuning stage, we present a Multi-scale Transformer U-Net (MT-UNet) to synthesize the target-modality images, in which a Dual-scale Selective Fusion (DSF) module is proposed to fully integrate multi-scale features extracted from the encoder of the pre-trained Edge-MAE. Moreover, we use the pre-trained encoder as a feature consistency module to measure the difference between high-level features of the synthesized image and the ground truth one. Experimental results show the effectiveness of the proposed SLMT-Net, and our model can reliably synthesize high-quality images when the training set is partially unpaired. Our code will be publicly available at https://github.com/lyhkevin/SLMT-Net.
translated by 谷歌翻译
\ textit {objection:}基于gadolinium的对比剂(GBCA)已被广泛用于更好地可视化脑磁共振成像中的疾病(MRI)。然而,大脑和身体内部的gadolin量引起了人们对使用GBCA的安全问题。因此,在提供类似的对比度信息的同时,可以减少甚至消除GBCA暴露的新方法的发展将在临床上具有重大用途。 \ textit {方法:}在这项工作中,我们提出了一种基于深度学习的方法,用于对脑肿瘤患者的对比增强T1合成。 3D高分辨率完全卷积网络(FCN)通过处理和聚合并行的多尺度信息保持高分辨率信息,旨在将前对比度MRI序列映射到对比度增强的MRI序列。具体而言,将三个前对比的MRI序列T1,T2和表观扩散系数图(ADC)用作输入,而对比后T1序列则被用作目标输出。为了减轻正常组织与肿瘤区域之间的数据不平衡问题,我们引入了局部损失,以改善肿瘤区域的贡献,从而可以更好地增强对肿瘤的增强结果。 \ textIt {结果:}进行了广泛的定量和视觉评估,我们提出的模型在大脑中达到28.24db的PSNR,在肿瘤区域达到21.2db。 \ textit {结论和意义:}我们的结果表明,用深度学习产生的合成对比图像代替GBCA的潜力。代码可在\ url {https://github.com/chenchao666/contrast-enhanced-mri-synthesis中获得
translated by 谷歌翻译
脑转移性疾病的治疗决策依赖于主要器官位点的知识,目前用活组织检查和组织学进行。在这里,我们开发了一种具有全脑MRI数据的准确非侵入性数字组织学的新型深度学习方法。我们的IRB批准的单网回顾性研究由患者(n = 1,399)组成,提及MRI治疗规划和伽马刀放射牢房超过19年。对比增强的T1加权和T2加权流体减毒的反转恢复脑MRI考试(n = 1,582)被预处理,并输入肿瘤细分,模态转移和主要部位分类的建议深度学习工作流程为五个课程之一(肺,乳腺,黑色素瘤,肾等)。十倍的交叉验证产生的总体AUC为0.947(95%CI:0.938,0.955),肺类AUC,0.899(95%CI:0.884,0.915),乳房类AUC为0.990(95%CI:0.983,0.997) ,黑色素瘤ACAC为0.882(95%CI:0.858,0.906),肾类AUC为0.870(95%CI:0.823,0.918),以及0.885的其他AUC(95%CI:0.843,0.949)。这些数据确定全脑成像特征是判别的,以便准确诊断恶性肿瘤的主要器官位点。我们的端到端深度射出方法具有巨大的分类来自全脑MRI图像的转移性肿瘤类型。进一步的细化可以提供一种无价的临床工具,以加快对精密治疗和改进的结果的原发性癌症现场鉴定。
translated by 谷歌翻译
从磁共振成像(MRI)中进行精确的脑肿瘤分割,对于多模式图像的联合学习是可取的。但是,在临床实践中,并非总是有可能获得一组完整的MRI,而缺失模态的问题会导致现有的多模式分割方法中的严重性能降解。在这项工作中,我们提出了第一次尝试利用变压器进行多模式脑肿瘤分割的尝试,该脑肿瘤分割对任何可用模式的任何组合子集都是可靠的。具体而言,我们提出了一种新型的多模式医疗变压器(MMMFORMER),用于不完整的多模式学习,具有三个主要成分:混合模态特异性的编码器,该编码器在每种模式中桥接卷积编码器和一个局部和全局上下文模型的模式内变压器;一种模式间变压器,用于建立和对齐模态跨模态的远程相关性,以对应于肿瘤区域的全局语义。一个解码器,与模态不变特征进行渐进的上采样和融合,以生成可靠的分割。此外,在编码器和解码器中都引入了辅助正规化器,以进一步增强模型对不完整方式的鲁棒性。我们对公共批评的大量实验$ 2018 $ $数据集用于脑肿瘤细分。结果表明,所提出的MMFORMER优于几乎所有不完整模态的亚群的多模式脑肿瘤分割的最新方法,尤其是在肿瘤分割的平均骰子中平均提高了19.07%,只有一种可用的模式。该代码可在https://github.com/yaozhang93/mmmenforer上找到。
translated by 谷歌翻译
多发性硬化症(MS)是中枢神经系统的慢性炎症和退行性疾病,其特征在于,白色和灰质的外观与个体患者的神经症状和标志进行地平整相关。磁共振成像(MRI)提供了详细的体内结构信息,允许定量和分类MS病变,其批判性地通知疾病管理。传统上,MS病变在2D MRI切片上手动注释,一个流程效率低,易于观察室内误差。最近,已经提出了自动统计成像分析技术以基于MRI体素强度检测和分段段病变。然而,它们的有效性受到MRI数据采集技术的异质性和MS病变的外观的限制。通过直接从图像学习复杂的病变表现,深度学习技术已经在MS病变分割任务中取得了显着的突破。在这里,我们提供了全面审查最先进的自动统计和深度学习MS分段方法,并讨论当前和未来的临床应用。此外,我们审查了域适应等技术策略,以增强现实世界临床环境中的MS病变分段。
translated by 谷歌翻译
数字医学图像的机器学习和流行的最新进展已经开辟了通过使用深卷积神经网络来解决挑战性脑肿瘤细分(BTS)任务的机会。然而,与非常广泛的RGB图像数据不同,在脑肿瘤分割中使用的医学图像数据在数据刻度方面相对稀缺,但在模态属性方面包含更丰富的信息。为此,本文提出了一种新的跨模型深度学习框架,用于从多种方式MRI数据分段脑肿瘤。核心思想是通过多模态数据挖掘丰富的模式以弥补数据量表不足。所提出的跨型号深度学习框架包括两个学习过程:跨模型特征转换(CMFT)过程和跨模型特征融合(CMFF)过程,其目的是通过跨越不同模态的知识来学习丰富的特征表示数据和融合知识分别来自不同的模态数据。在Brats基准上进行了综合实验,表明,与基线方法和最先进的方法相比,所提出的跨模型深度学习框架可以有效地提高大脑肿瘤分割性能。
translated by 谷歌翻译
精确可靠地分割医学图像对于疾病诊断和治疗是重要的。由于各种各样的物体尺寸,形状和扫​​描方式,这是一个具有挑战性的任务。最近,许多卷积神经网络(CNN)设计用于分割任务,取得了巨大的成功。然而,很少有研究完全考虑了物体的大小,因此大多数表现出对小物体分割的分割的性能不佳。这对早期检测疾病产生重大影响。本文提出了一种上下文轴向储备注意网络(Caranet),与最近最先进的模型相比,在小对象上提高小物体的分割性能。我们在脑肿瘤(Brats 2018)和息肉(Kvasir-Seg,CVC-Colondb,CVC-ClinicDB,CVC-300和ETIS-LaribpolypdB)进行测试。我们的加麻不仅达到了顶级的骰子分割精度,而且还显示出小医疗物体的分割的明显优势。
translated by 谷歌翻译
人们以不同的感官感知世界,例如视觉,听觉,气味和触摸。从多种方式处理和融合信息使人工智能可以更轻松地了解我们周围的世界。但是,当缺少模式时,在不同情况下,可用方式的数量会不同,这导致了N至一对融合问题。为了解决这个问题,我们提出了一个称为Tfusion的基于变压器的融合块。与预设公式或基于卷积的方法不同,所提出的块自动学习以融合可用的模式,而无需合成或零填充丢失。具体而言,从上游处理模型中提取的特征表示形式被投影为令牌并馈入变压器层以生成潜在的多模式相关性。然后,为了减少对特定模式的依赖性,引入了一种模态注意机制来构建共享表示,该表示可以由下游决策模型应用。提出的TFUSH块可以轻松地集成到现有的多模式分析网络中。在这项工作中,我们将tfusion应用于不同的骨干网络,以进行多模式的人类活动识别和脑肿瘤分割任务。广泛的实验结果表明,与竞争融合策略相比,Tfusion块的性能更好。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
由于信息源通常不完美,因此有必要考虑其在多源信息融合任务中的可靠性。在本文中,我们提出了一个新的深层框架,使我们能够使用Dempster-Shafer理论的形式合并多MR图像分割结果,同时考虑到相对于不同类别的不同模式的可靠性。该框架由编码器折线功能提取模块组成,该模块是每个模态在每个体素上计算信念函数的证据分割模块,以及多模式的证据融合模块,该模块为每个模态证据和每个模态证据和折现率分配使用Dempster规则结合折扣证据。整个框架是通过根据折扣骰子指数最小化新的损失功能来培训的,以提高细分精度和可靠性。该方法在1251例脑肿瘤患者的Brats 2021数据库中进行了评估。定量和定性的结果表明,我们的方法表现优于最新技术,并实现了在深神经网络中合并多信息的有效新想法。
translated by 谷歌翻译