在这项工作中,我们研究了由部分微分方程(PDE)治理的动态过程的二阶统计表征中稀疏和多通道结构的出现。我们考虑了几种最先进的多道协方差和逆协方差(精确)矩阵估计,并在物理驱动的预测背景下纳入集合卡尔曼滤波器(ENKF)时,在物理驱动的预测中的准确性和可解释方面来检查他们的优点和缺点。特别地,我们表明,当与适当的协方差和精密矩阵估计器集成时,可以通过ENKF准确地跟踪从泊松和对流扩散类型的多道数据。
translated by 谷歌翻译
随着野火产生的大气气溶胶减少了向地球的传入太阳辐射,越来越频繁的野火会显着影响太阳能的产生。通过气溶胶光学深度(AOD)测量大气气溶胶,可以通过地球静止卫星检索和监测AOD数据流。但是,多源遥感数据流通常具有异质特征,包括不同的数据缺失率,测量误差,系统偏见等。为了准确估计和预测潜在的AOD传播过程,存在实践需求和理论利益,以提出一种通过同时利用或融合多种源的异质卫星远程远程远程灵感数据来建模物理信息的统计方法。提出的方法利用光谱方法将多源卫星数据流与控制AOD传播过程的基本对流扩散方程相结合。统计模型中包括一个偏差校正过程,以说明物理模型的偏差和傅立叶系列的截断误差。提出的方法适用于从国家海洋和大气管理局获得的加利福尼亚野火AOD数据流。提供了全面的数值示例,以证明所提出方法的预测能力和模型解释性。计算机代码已在GitHub上提供。
translated by 谷歌翻译
我们开发了一种基于嘈杂观测值的时空动力学模型的完全贝叶斯学习和校准的方法。通过将观察到的数据与机械系统的模拟计算机实验融合信息来实现校准。联合融合使用高斯和非高斯州空间方法以及高斯工艺回归。假设动态系统受到有限的输入收集的控制,高斯过程回归通过许多训练运行来了解这些参数的效果,从而推动了时空状态空间组件的随机创新。这可以在空间和时间上对动态进行有效的建模。通过减少的高斯过程和共轭模型规范,我们的方法适用于大规模校准和反问题。我们的方法是一般,可扩展的,并且能够学习具有潜在模型错误指定的各种动力系统。我们通过解决普通和部分非线性微分方程的分析中产生的反问题来证明这种灵活性,此外,还可以在网络上生成时空动力学的黑盒计算机模型。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
许多物理过程,例如天气现象或流体力学由部分微分方程(PDE)管辖。使用神经网络建模这种动态系统是一个新兴的研究领域。然而,目前的方法以各种方式限制:它们需要关于控制方程的先验知识,并限于线性或一阶方程。在这项工作中,我们提出了一种将卷积神经网络(CNNS)与可微分的颂歌求解器结合到模型动力系统的模型。我们表明,标准PDE求解器中使用的线路方法可以使用卷曲来表示,这使得CNN是对参数化任意PDE动态的自然选择。我们的模型可以应用于任何数据而不需要任何关于管理PDE的知识。我们评估通过求解各种PDE而产生的数据集的NeuralPDE,覆盖更高的订单,非线性方程和多个空间尺寸。
translated by 谷歌翻译
多保真建模和学习在与物理模拟相关的应用中很重要。它可以利用低保真性和高保真示例进行培训,以降低数据生成成本,同时仍然达到良好的性能。尽管现有方法仅模型有限,离散的保真度,但实际上,忠诚度的选择通常是连续且无限的,这可以对应于连续的网格间距或有限元元素长度。在本文中,我们提出了无限的保真度核心化(IFC)。鉴于数据,我们的方法可以在连续无限的保真度中提取和利用丰富的信息来增强预测准确性。我们的模型可以插值和/或推断出对新型保真度的预测,甚至可以高于训练数据的保​​真度。具体而言,我们引入了一个低维的潜在输出作为保真度和输入的连续函数,并具有带有基矩阵的多个IT以预测高维解决方案输出。我们将潜在输出建模为神经普通微分方程(ODE),以捕获内部的复杂关系并在整个连续保真度中整合信息。然后,我们使用高斯工艺或其他颂歌来估计忠诚度变化的碱基。为了有效的推断,我们将碱基重组为张量,并使用张量 - 高斯变异后部为大规模输出开发可扩展的推理算法。我们在计算物理学的几个基准任务中展示了我们的方法的优势。
translated by 谷歌翻译
多维时空数据的概率建模对于许多现实世界应用至关重要。然而,现实世界时空数据通常表现出非平稳性的复杂依赖性,即相关结构随位置/时间而变化,并且在空间和时间之间存在不可分割的依赖性,即依赖关系。开发有效和计算有效的统计模型,以适应包含远程和短期变化的非平稳/不可分割的过程,成为一项艰巨的任务,尤其是对于具有各种腐败/缺失结构的大规模数据集。在本文中,我们提出了一个新的统计框架 - 贝叶斯互补内核学习(BCKL),以实现多维时空数据的可扩展概率建模。为了有效地描述复杂的依赖性,BCKL与短距离时空高斯过程(GP)相结合的内核低级分解(GP),其中两个组件相互补充。具体而言,我们使用多线性低级分组组件来捕获数据中的全局/远程相关性,并基于紧凑的核心函数引入加法短尺度GP,以表征其余的局部变异性。我们为模型推断开发了有效的马尔可夫链蒙特卡洛(MCMC)算法,并在合成和现实世界时空数据集上评估了所提出的BCKL框架。我们的结果证实了BCKL在提供准确的后均值和高质量不确定性估计方面的出色表现。
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
我们确定有效的随机微分方程(SDE),用于基于精细的粒子或基于试剂的模拟的粗糙观察结果;然后,这些SDE提供了精细规模动力学的有用的粗替代模型。我们通过神经网络近似这些有效的SDE中的漂移和扩散率函数,可以将其视为有效的随机分解。损失函数的灵感来自于已建立的随机数值集成剂的结构(在这里,欧拉 - 玛鲁山和米尔斯坦);因此,我们的近似值可以受益于这些基本数值方案的向后误差分析。当近似粗的模型(例如平均场方程)可用时,它们还自然而然地适合“物理信息”的灰色盒识别。 Langevin型方程和随机部分微分方程(SPDE)的现有数值集成方案也可以用于训练;我们在随机强迫振荡器和随机波方程式上证明了这一点。我们的方法不需要长时间的轨迹,可以在散落的快照数据上工作,并且旨在自然处理每个快照的不同时间步骤。我们考虑了预先知道粗糙的集体观察物以及必须以数据驱动方式找到它们的情况。
translated by 谷歌翻译
最近的机器学习(ML)和深度学习(DL)的发展增加了所有部门的机会。 ML是一种重要的工具,可以应用于许多学科,但其直接应用于土木工程问题可能是挑战性的。在实验室中模拟的土木工程应用程序通常在现实世界测试中失败。这通常归因于用于培训和测试ML模型的数据之间的数据不匹配以及它在现实世界中遇到的数据,称为数据偏移的现象。然而,基于物理的ML模型集成了数据,部分微分方程(PDE)和数学模型以解决数据移位问题。基于物理的ML模型训练,以解决监督学习任务,同时尊重一般非线性方程描述的任何给定的物理定律。基于物理的ML,它在许多科学学科中占据中心阶段,在流体动力学,量子力学,计算资源和数据存储中起着重要作用。本文综述了基于物理学的ML历史及其在土木工程中的应用。
translated by 谷歌翻译
Machine learning-based modeling of physical systems has experienced increased interest in recent years. Despite some impressive progress, there is still a lack of benchmarks for Scientific ML that are easy to use but still challenging and representative of a wide range of problems. We introduce PDEBench, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs). PDEBench comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines. Our proposed set of benchmark problems contribute the following unique features: (1) A much wider range of PDEs compared to existing benchmarks, ranging from relatively common examples to more realistic and difficult problems; (2) much larger ready-to-use datasets compared to prior work, comprising multiple simulation runs across a larger number of initial and boundary conditions and PDE parameters; (3) more extensible source codes with user-friendly APIs for data generation and baseline results with popular machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method). PDEBench allows researchers to extend the benchmark freely for their own purposes using a standardized API and to compare the performance of new models to existing baseline methods. We also propose new evaluation metrics with the aim to provide a more holistic understanding of learning methods in the context of Scientific ML. With those metrics we identify tasks which are challenging for recent ML methods and propose these tasks as future challenges for the community. The code is available at https://github.com/pdebench/PDEBench.
translated by 谷歌翻译
高斯过程(GPS)提供了对图表的推理和学习的原则和直接的方法。然而,缺乏用于时空建模的正义的图形内核已经备份了在图形问题中的使用。我们在图形上利用随机偏微分方程(SPDES)和GPS之间的显式链接,并导出捕获空间和时间交互的不可分离的时空图形内核。我们制定了随机热方程和波动方程的图形核。我们展示通过为图形提供新颖的时空GP建模的新型工具,我们在特征扩散,振荡和其他复杂交互中的实际应用中优先于现有的图形内核。
translated by 谷歌翻译
从数据中发现复杂系统的基本动力是一个重要的实践主题。受限的优化算法被广泛使用并带来许多成功。但是,这种纯粹的数据驱动方法可能会在存在随机噪声的情况下会导致物理不正确,并且无法轻易通过不完整的数据来处理情况。在本文中,开发了一种具有部分观察结果的复杂湍流系统的新迭代学习算法,该算法在识别模型结构,恢复未观察到的变量和估计参数之间交替。首先,将基于因果关系的学习方法用于模型结构的稀疏识别,该方法考虑了从数据中预先学习的某些物理知识。它在应对特征之间的间接耦合方面具有独特的优势,并且与随机噪声具有鲁棒性。实用算法旨在促进高维系统的因果推断。接下来,构建了系统的非线性随机参数化,以表征未观察到的变量的时间演变。通过有效的非线性数据同化的封闭分析公式被利用以采样未观察到的变量的轨迹,然后将其视为合成观测值,以提高快速参数估计。此外,状态变量依赖性和物理约束的本地化已纳入学习过程,从而减轻维度的诅咒并防止有限的时间爆破问题。数值实验表明,新算法成功地识别模型结构并为许多具有混乱动力学,时空多尺度结构,间歇性和极端事件的复杂非线性系统提供合适的随机参数化。
translated by 谷歌翻译
混沌系统中仿真预测的准确性严重依赖于预测初始化时系统状态的高质量估计。数据同化方法用于通过系统地结合噪音,不完整的观察和系统动态的数值模型来推断这些初始条件,以产生有效的估计方案。我们介绍了摊销同化,这是一种学习的框架,用于从嘈杂的观察序列中吸收动态系统,无需基础真理数据。我们通过使用可分辨率模拟来激励来自自我监控的自我监督剥夺到动态系统设置的强大结果来激励框架。跨几台基准系统的实验结果突出了我们对广泛使用的数据同化方法的提高效果。
translated by 谷歌翻译
在科学技术的许多领域中,从数据中提取理事物理学是一个关键挑战。方程发现的现有技术取决于输入和状态测量。但是,实际上,我们只能访问输出测量。我们在这里提出了一个新的框架,用于从输出测量中学习动态系统的物理学;这本质上将物理发现问题从确定性转移到随机域。提出的方法将输入模拟为随机过程,并将随机演算,稀疏学习算法和贝叶斯统计的概念融合在一起。特别是,我们将稀疏性结合起来,促进尖峰和平板先验,贝叶斯法和欧拉·马鲁山(Euler Maruyama)计划,以从数据中识别统治物理。最终的模型高效,可以进行稀疏,嘈杂和不完整的输出测量。在涉及完整状态测量和部分状态测量的几个数值示例中说明了所提出方法的功效和鲁棒性。获得的结果表明,拟议方法仅从产出测量中识别物理学的潜力。
translated by 谷歌翻译
高维时空动力学通常可以在低维子空间中编码。用于建模,表征,设计和控制此类大规模系统的工程应用通常依赖于降低尺寸,以实时计算解决方案。降低维度的常见范例包括线性方法,例如奇异值分解(SVD)和非线性方法,例如卷积自动编码器(CAE)的变体。但是,这些编码技术缺乏有效地表示与时空数据相关的复杂性的能力,后者通常需要可变的几何形状,非均匀的网格分辨率,自适应网格化和/或参数依赖性。为了解决这些实用的工程挑战,我们提出了一个称为神经隐式流(NIF)的一般框架,该框架可以实现大型,参数,时空数据的网格不稳定,低级别表示。 NIF由两个修改的多层感知器(MLP)组成:(i)shapenet,它分离并代表空间复杂性,以及(ii)参数,该参数解释了任何其他输入复杂性,包括参数依赖关系,时间和传感器测量值。我们演示了NIF用于参数替代建模的实用性,从而实现了复杂时空动力学的可解释表示和压缩,有效的多空间质量任务以及改善了稀疏重建的通用性能。
translated by 谷歌翻译
物理建模对于许多现代科学和工程应用至关重要。从数据科学或机器学习的角度来看,更多的域 - 不可吻合,数据驱动的模型是普遍的,物理知识 - 通常表示为微分方程 - 很有价值,因为它与数据是互补的,并且可能有可能帮助克服问题例如数据稀疏性,噪音和不准确性。在这项工作中,我们提出了一个简单但功能强大且通用的框架 - 自动构建物理学,可以将各种微分方程集成到高斯流程(GPS)中,以增强预测准确性和不确定性量化。这些方程可以是线性或非线性,空间,时间或时空,与未知的源术语完全或不完整,等等。基于内核分化,我们在示例目标函数,方程相关的衍生物和潜在源函数之前构建了GP,这些函数全部来自多元高斯分布。采样值被馈送到两个可能性:一个以适合观测值,另一个符合方程式。我们使用美白方法来逃避采样函数值和内核参数之间的强依赖性,并开发出一种随机变分学习算法。在模拟和几个现实世界应用中,即使使用粗糙的,不完整的方程式,自动元素都显示出对香草GPS的改进。
translated by 谷歌翻译
Partial differential equations (PDEs) are widely used for description of physical and engineering phenomena. Some key parameters involved in PDEs, which represents certain physical properties with important scientific interpretations, are difficult or even impossible to be measured directly. Estimation of these parameters from noisy and sparse experimental data of related physical quantities is an important task. Many methods for PDE parameter inference involve a large number of evaluations of numerical solution of PDE through algorithms such as finite element method, which can be time-consuming especially for nonlinear PDEs. In this paper, we propose a novel method for estimating unknown parameters in PDEs, called PDE-Informed Gaussian Process Inference (PIGPI). Through modeling the PDE solution as a Gaussian process (GP), we derive the manifold constraints induced by the (linear) PDE structure such that under the constraints, the GP satisfies the PDE. For nonlinear PDEs, we propose an augmentation method that transfers the nonlinear PDE into an equivalent PDE system linear in all derivatives that our PIGPI can handle. PIGPI can be applied to multi-dimensional PDE systems and PDE systems with unobserved components. The method completely bypasses the numerical solver for PDE, thus achieving drastic savings in computation time, especially for nonlinear PDEs. Moreover, the PIGPI method can give the uncertainty quantification for both the unknown parameters and the PDE solution. The proposed method is demonstrated by several application examples from different areas.
translated by 谷歌翻译
物理启发的潜力模型为纯粹的数据驱动工具提供可解释的替代品,用于动态系统的推断。它们携带微分方程的结构和高斯过程的灵活性,产生可解释的参数和动态施加的潜在功能。然而,与这些模型相关联的现有推理技术依赖于在分析形式中很少可用的后内核术语的精确计算。大多数与从业者相关的应用程序,例如Hill方程或扩散方程,因此是棘手的。在本文中,我们通过提出对一般类非线性和抛物面部分微分方程潜力模型的变分解决方案来克服这些计算问题。此外,我们表明,神经操作员方法可以将我们的模型扩展到数千个实例,实现快速,分布式计算。我们通过在几个任务中实现竞争性能,展示了我们框架的效力和灵活性,其中核的核心不同程度的遗传性。
translated by 谷歌翻译
当通过差异模型研究流行动力学时,要了解现象并模拟预测场景所需的参数需要微妙的校准阶段,通常会因官方来源报告的稀缺性和不确定性而变得更加挑战。在这种情况下,通过嵌入控制物理现象在学习过程中的差异模型的知识,可以有效解决数据驱动的学习的逆问题,并解决相应的流行病问题,从而使物理知识的神经网络(PINN)(PINN)(PINN)(PINNS)。 。然而,在许多情况下,传染病的空间传播的特征是在多尺度PDE的不同尺度上的个体运动。这反映了与城市和邻近区域内动态有关的区域或领域的异质性。在存在多个量表的情况下,PINN的直接应用通常会导致由于神经网络损失函数中差异模型的多尺度性质而导致的结果差。为了使神经网络相对于小规模统一运行,希望神经网络满足学习过程中的渐近保护(AP)特性。为此,我们考虑了一类新的AP神经网络(APNNS),用于多尺度双曲线传输模型的流行病扩散模型,由于损失函数的适当配方,它能够在系统的不同尺度上均匀地工作。一系列针对不同流行病的数值测试证实了所提出的方法的有效性,在处理多尺度问题时,突出了AP在神经网络中的重要性,尤其是在存在稀疏和部分观察到的系统的情况下。
translated by 谷歌翻译