联邦机器学习是一种多功能和灵活的工具,可以利用来自不同来源的分布式数据,特别是当通信技术快速发展并且现在可以在移动设备上收集前所未有的数据。联邦学习方法不仅利用数据而且挖掘了网络中所有设备的计算能力,以实现更有效的模型培训。尽管如此,虽然大多数传统的联邦学习方法适用于同类数据和任务,但将方法适应不同的异构数据和任务分配是具有挑战性的。这种限制限制了联合学习在现实世界环境中的应用,特别是在医疗保健环境中。灵感来自Meta-Learning的基本思想,在这项研究中,我们提出了一种新的算法,这是联邦学习和荟萃学习的一体化,解决这个问题。此外,由于转移学习的模型泛化的优点,我们通过引入部分参数共享进一步提高了我们的算法。我们命名该方法部分Meta联合学习(PMFL)。最后,我们将算法应用于两个医疗数据集。我们表明我们的算法可以获得最快的训练速度,并在处理异构医疗数据集时实现最佳性能。
translated by 谷歌翻译
皮肤病学疾病对全球健康构成了重大威胁,影响了世界上近三分之一的人口。各种研究表明,早期诊断和干预通常对预后和预后至关重要。为此,在过去的十年中,基于深度学习的智能手机应用程序的快速发展,该应用程序使用户可以方便,及时地识别出围绕皮肤出现的问题。为了收集深度学习所需的足够数据,同时保护患者的隐私,经常使用联合学习,在该数据集合数据集本地的同时汇总了全球模型。但是,现有的联合学习框架主要旨在优化整体性能,而常见的皮肤病学数据集则严重不平衡。在将联合学习应用于此类数据集时,可能会出现明显的诊断准确性差异。为了解决这样的公平问题,本文提出了一个公平意识的联邦学习框架,用于皮肤病学诊断。该框架分为两个阶段:在第一个FL阶段,具有不同皮肤类型的客户在联合学习过程中接受了训练,以构建所有皮肤类型的全球模型。在此过程中,使用自动重量聚合器将更高的权重分配给损失较高的客户,并且聚合器的强度取决于损失之间的差异水平。在后一个FL阶段,每个客户根据FL阶段的全球模型微调了其个性化模型。为了获得更好的公平性,为每个客户选择了来自不同时期的模型,以在0.05内保持不同皮肤类型的准确性差异。实验表明,与最先进的框架相比,我们提出的框架有效地提高了公平性和准确性。
translated by 谷歌翻译
联合学习是一种数据解散隐私化技术,用于以安全的方式执行机器或深度学习。在本文中,我们介绍了有关联合学习的理论方面客户次数有所不同的用例。具体而言,使用从开放数据存储库中获得的胸部X射线图像提出了医学图像分析的用例。除了与隐私相关的优势外,还将研究预测的改进(就曲线下的准确性和面积而言)和减少执行时间(集中式方法)。将从培训数据中模拟不同的客户,以不平衡的方式选择,即,他们并非都有相同数量的数据。考虑三个或十个客户之间的结果与集中案件相比。间歇性客户将分析两种遵循方法,就像在实际情况下,某些客户可能会离开培训,一些新的新方法可能会进入培训。根据准确性,曲线下的区域和执行时间的结果,结果的结果的演变显示为原始数据被划分的客户次数。最后,提出了该领域的改进和未来工作。
translated by 谷歌翻译
随着物联网,AI和ML/DL算法的出现,数据驱动的医疗应用已成为一种有前途的工具,用于从医学数据设计可靠且可扩展的诊断和预后模型。近年来,这引起了从学术界到工业的广泛关注。这无疑改善了医疗保健提供的质量。但是,由于这些基于AI的医疗应用程序在满足严格的安全性,隐私和服务标准(例如低延迟)方面的困难,因此仍然采用较差。此外,医疗数据通常是分散的和私人的,这使得在人群之间产生强大的结果具有挑战性。联邦学习(FL)的最新发展使得以分布式方式训练复杂的机器学习模型成为可能。因此,FL已成为一个积极的研究领域,尤其是以分散的方式处理网络边缘的医疗数据,以保护隐私和安全问题。为此,本次调查论文重点介绍了数据共享是重大负担的医疗应用中FL技术的当前和未来。它还审查并讨论了当前的研究趋势及其设计可靠和可扩展模型的结果。我们概述了FL将军的统计问题,设备挑战,安全性,隐私问题及其在医疗领域的潜力。此外,我们的研究还集中在医疗应用上,我们重点介绍了全球癌症的负担以及有效利用FL来开发计算机辅助诊断工具来解决这些诊断工具。我们希望这篇评论是一个检查站,以彻底的方式阐明现有的最新最新作品,并为该领域提供开放的问题和未来的研究指示。
translated by 谷歌翻译
数百万患者患有世界各地的罕见疾病。然而,罕见疾病的样品远小于常见疾病。此外,由于医疗数据的敏感性,医院通常不愿意分享患者信息,以引用隐私问题的数据融合。这些挑战使传统的AI模型难以提取疾病预测目的的稀有疾病特征。在本文中,我们通过提出基于联邦荟萃学习的稀有疾病预测的新方法来克服这种限制。为了提高稀有疾病的预测准确性,我们设计了一种基于关注的元学习(ATML)方法,根据基础学习者的测量培训效果,动态调整对不同任务的关注。另外,提出了一种基于动态权重的融合策略,以进一步提高联合学习的准确性,这基于每个本地模型的准确性动态选择客户端。实验表明,随着五次镜头,我们的方法以准确性和速度为原始联合元学习算法进行了出差。与每个医院的本地模型相比,所提出的模型的平均预测精度增加了13.28%。
translated by 谷歌翻译
联邦学习一直是一个热门的研究主题,使不同组织的机器学习模型的协作培训在隐私限制下。随着研究人员试图支持更多具有不同隐私方法的机器学习模型,需要开发系统和基础设施,以便于开发各种联合学习算法。类似于Pytorch和Tensorflow等深度学习系统,可以增强深度学习的发展,联邦学习系统(FLSS)是等效的,并且面临各个方面的面临挑战,如有效性,效率和隐私。在本调查中,我们对联合学习系统进行了全面的审查。为实现流畅的流动和引导未来的研究,我们介绍了联合学习系统的定义并分析了系统组件。此外,我们根据六种不同方面提供联合学习系统的全面分类,包括数据分布,机器学习模型,隐私机制,通信架构,联合集市和联合的动机。分类可以帮助设计联合学习系统,如我们的案例研究所示。通过系统地总结现有联合学习系统,我们展示了设计因素,案例研究和未来的研究机会。
translated by 谷歌翻译
联邦学习(FL)是一种分布式学习方法,它为医学机构提供了在全球模型中合作的前景,同时保留患者的隐私。尽管大多数医疗中心执行类似的医学成像任务,但它们的差异(例如专业,患者数量和设备)导致了独特的数据分布。数据异质性对FL和本地模型的个性化构成了挑战。在这项工作中,我们研究了FL生产中间半全球模型的一种自适应分层聚类方法,因此具有相似数据分布的客户有机会形成更专业的模型。我们的方法形成了几个群集,这些集群由具有最相似数据分布的客户端组成;然后,每个集群继续分开训练。在集群中,我们使用元学习来改善参与者模型的个性化。我们通过评估我们在HAM10K数据集上的建议方法和极端异质数据分布的HAM10K数据集上的我们提出的方法,将聚类方法与经典的FedAvg和集中式培训进行比较。我们的实验表明,与标准的FL方法相比,分类精度相比,异质分布的性能显着提高。此外,我们表明,如果在群集中应用,则模型会更快地收敛,并且仅使用一小部分数据,却优于集中式培训。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
高效联合学习是在边缘设备上培训和部署AI模型的关键挑战之一。然而,在联合学习中维护数据隐私提出了几种挑战,包括数据异质性,昂贵的通信成本和有限的资源。在本文中,我们通过(a)通过基于本地客户端的深度增强学习引入突出参数选择代理的上述问题,并在中央服务器上聚合所选择的突出参数,(b)分割正常的深度学习模型〜 (例如,CNNS)作为共享编码器和本地预测器,并通过联合学习训练共享编码器,同时通过本地自定义预测器将其知识传送到非IID客户端。所提出的方法(a)显着降低了联合学习的通信开销,并加速了模型推断,而方法(b)则在联合学习中解决数据异质性问题。此外,我们利用梯度控制机制来校正客户之间的梯度异质性。这使得训练过程更稳定并更快地收敛。实验表明,我们的方法产生了稳定的训练过程,并与最先进的方法相比实现了显着的结果。在培训VGG-11时,我们的方法明显降低了通信成本最高108 GB,并在培训Reset-20时需要7.6美元的通信开销,同时通过减少高达39.7 \%$ 39.7 \%$ vgg- 11.
translated by 谷歌翻译
跨不同边缘设备(客户)局部数据的分布不均匀,导致模型训练缓慢,并降低了联合学习的准确性。幼稚的联合学习(FL)策略和大多数替代解决方案试图通过加权跨客户的深度学习模型来实现更多公平。这项工作介绍了在现实世界数据集中遇到的一种新颖的非IID类型,即集群键,其中客户组具有具有相似分布的本地数据,从而导致全局模型收敛到过度拟合的解决方案。为了处理非IID数据,尤其是群集串数据的数据,我们提出了FedDrl,这是一种新型的FL模型,它采用了深厚的强化学习来适应每个客户的影响因素(将用作聚合过程中的权重)。在一组联合数据集上进行了广泛的实验证实,拟议的FEDDR可以根据CIFAR-100数据集的平均平均为FedAvg和FedProx方法提高了有利的改进,例如,高达4.05%和2.17%。
translated by 谷歌翻译
联合学习(FL)以来已提议已应用于许多领域,例如信用评估,医疗等。由于网络或计算资源的差异,客户端可能不会同时更新其渐变可能需要花费等待或闲置的时间。这就是为什么需要异步联合学习(AFL)方法。AFL中的主要瓶颈是沟通。如何在模型性能和通信成本之间找到平衡是AFL的挑战。本文提出了一种新的AFL框架VAFL。我们通过足够的实验验证了算法的性能。实验表明,VAFL可以通过48.23 \%的平均通信压缩速率降低约51.02 \%的通信时间,并允许模型更快地收敛。代码可用于\ url {https://github.com/robai-lab/vafl}
translated by 谷歌翻译
在点击率(CTR)预测的联合学习(FL)中,用户的数据未共享以保护隐私。学习是通过在客户端设备上本地培训进行的,并仅将模型更改传达给服务器。有两个主要的挑战:(i)客户异质性,制作使用加权平均来汇总客户模型更新的FL算法的进步缓慢且学习结果不令人满意; (ii)由于每个实验所需的大量计算时间和资源,因此使用反复试验方法调整服务器学习率的困难。为了应对这些挑战,我们提出了一种简单的在线元学习方法,以学习汇总模型更新的策略,该方法根据客户属性适应客户的重要性并调整更新的步骤大小。我们在公共数据集上进行广泛的评估。我们的方法在收敛速度和最终学习结果的质量方面都大大优于最先进的方法。
translated by 谷歌翻译
联合学习,该学习,跨越客户的神经网络的重量,在医疗领域中获得了注意力,因为它可以在维护数据隐私的同时对分散数据的大型语料库进行培训。例如,这使得Covid-19对胸部X射线(CXR)图像进行Covid-19诊断的神经网络训练,而不会在多家医院收集患者CXR数据。遗憾的是,如果采用高度富有富有富有富有富有富有富有富有富有富有富有富有富有富有富有富有富有富有效率的网络架构,权重的交换会很快消耗网络带宽。所谓的分流学习通过将神经网络划分为客户端和服务器部分来部分解决此问题,使得网络的客户端占用较少的广泛计算资源和带宽。但是,目前尚不清楚如何在不牺牲整体网络性能的情况下找到最佳分裂。为了合并这些方法,从而最大限度地提高了它们的不同优势,这里我们表明视觉变压器,最近开发的具有直接可分解配置的深度学习架构,理想地适合分裂学习而不会牺牲性能。即使在使用来自多个来源的CXR数据集之间模拟医院之间实际协作的非独立性和相同的数据分布,也能够实现与数据集中培训相当的性能。此外,提出的框架以及异构多任务客户端还改善了包括Covid-19诊断的单独任务性能,消除了与无数参数共享大权重的需求。我们的业绩肯定了变压器在医学成像中的协作学习的适用性,并为未来的现实界限铺平了前进的方式。
translated by 谷歌翻译
在金融和医疗保健等高度监管域中的机构通常存在围绕数据共享的限制性规则。联合学习是一种分布式学习框架,可以实现对分散数据的多机构合作,并改善了每个合作师的数据隐私的保护。在本文中,我们提出了一种用于分散的联邦学习的通信有效的方案,称为ProxyFL或基于代理的联合学习。 ProxyFL中的每个参与者都维护了两个模型,私人模型和旨在保护参与者隐私的公开共享代理模型。代理模型允许参与者之间的高效信息交换,使用PushSum方法而无需集中式服务器。所提出的方法通过允许模型异质性消除了规范联合学习的显着限制;每个参与者都可以拥有任何架构的私有模型。此外,我们通过代理通信的协议导致使用差异隐私分析的隐私保障更强。对流行的图像数据集的实验,以及使用超过30,000多个高质量的千兆的千兆子痫组织的泛癌诊断问题整个幻灯片图像,表明ProxyFL可以优于现有的现有替代方案,越来越少的沟通开销和更强大的隐私。
translated by 谷歌翻译
随着对数据隐私和数据量迅速增加的越来越关注,联邦学习(FL)已成为重要的学习范式。但是,在FL环境中共同学习深层神经网络模型被证明是一项非平凡的任务,因为与神经网络相关的复杂性,例如跨客户的各种体系结构,神经元的置换不变性以及非线性的存在每一层的转换。这项工作介绍了一个新颖的联合异质神经网络(FEDHENN)框架,该框架允许每个客户构建个性化模型,而无需在跨客户范围内实施共同的架构。这使每个客户都可以优化本地数据并计算约束,同时仍能从其他(可能更强大)客户端的学习中受益。 Fedhenn的关键思想是使用从同行客户端获得的实例级表示,以指导每个客户的同时培训。广泛的实验结果表明,Fedhenn框架能够在跨客户的同质和异质体系结构的设置中学习更好地表现客户的模型。
translated by 谷歌翻译
联合学习(FL)是一个系统,中央聚合器协调多个客户解决机器学习问题的努力。此设置允许分散培训数据以保护隐私。本文的目的是提供针对医疗保健的FL系统的概述。 FL在此根据其框架,架构和应用程序进行评估。这里显示的是,FL通过中央聚合器服务器通过共享的全球深度学习(DL)模型解决了前面的问题。本文研究了最新的发展,并提供了来自FL研究的快速增长的启发,列出了未解决的问题。在FL的背景下,描述了几种隐私方法,包括安全的多方计算,同态加密,差异隐私和随机梯度下降。此外,还提供了对各种FL类的综述,例如水平和垂直FL以及联合转移学习。 FL在无线通信,服务建议,智能医学诊断系统和医疗保健方面有应用,本文将在本文中进行讨论。我们还对现有的FL挑战进行了彻底的审查,例如隐私保护,沟通成本,系统异质性和不可靠的模型上传,然后是未来的研究指示。
translated by 谷歌翻译
联合学习(FL)可以在不共享参与网站的数据的情况下协作学习深层学习模型。在医学图像分析中的FL相对较新,可开放增强功能。在这项研究中,我们提出了一种新的联邦学习方法,用于培训更广泛的模型。所提出的方法利用了客户选择中的随机性,也利用了联合平均过程。我们将FedDropOutvg与FL情景中的几种算法进行比较,用于现实世界多站点组织病理学图像分类任务。我们展示了通过FEDDROPOUDAVG,最终模型可以比其他FL方法更好地实现性能,并且更接近经典的深度学习模型,需要为集中培训共享所有数据。我们在大型数据集上测试训练有素的模型,由21个不同中心组成的120万像素瓷砖。为了评估所提出的方法的泛化能力,我们使用来自FL中的中心的中心的RET-OUT测试集,并且来自其他独立中心的看不见的数据,其数据未在联邦培训中使用。我们表明,拟议的方法比其他最先进的联邦培训方法更广泛。据我们所知,我们的是第一个在医学图像分析任务的联合设置中使用随机客户端和本地模型参数选择过程的研究。
translated by 谷歌翻译
个性化联合学习(FL)是佛罗里达州的一个新兴研究领域,在客户之间存在数据异质性的情况下,可以学习一个易于适应的全球模型。但是,个性化FL的主要挑战之一是,由于客户数据与服务器隔离以确保隐私,因此非常依赖客户的计算资源来计算高阶梯度。为了解决这个问题,我们专注于服务器可以独立于客户数据独立于客户数据的问题设置,这是各种应用程序中普遍的问题设置,但在现有文献中相对尚未探索。具体而言,我们提出了FedSim,这是一种针对个性化FL的新方法,该方法积极利用此类服务​​器数据来改善服务器中的元梯度计算以提高个性化性能。在实验上,我们通过各种基准和消融证明了FEDSIM在准确性方面优于现有方法,通过计算服务器中的完整元梯度,在计算上更有效,并且收敛速度高达34.2%。
translated by 谷歌翻译
本文提出并表征了联合学习(OARF)的开放应用程序存储库,是联合机器学习系统的基准套件。以前可用的联合学习基准主要集中在合成数据集上,并使用有限数量的应用程序。 OARF模仿更现实的应用方案,具有公开的数据集,如图像,文本和结构数据中的不同数据孤岛。我们的表征表明,基准套件在数据大小,分布,特征分布和学习任务复杂性中多样化。与参考实施的广泛评估显示了联合学习系统的重要方面的未来研究机会。我们开发了参考实现,并评估了联合学习的重要方面,包括模型准确性,通信成本,吞吐量和收敛时间。通过这些评估,我们发现了一些有趣的发现,例如联合学习可以有效地提高端到端吞吐量。
translated by 谷歌翻译
Deep Neural Networks (DNNs) have been ubiquitously adopted in internet of things and are becoming an integral of our daily life. When tackling the evolving learning tasks in real world, such as classifying different types of objects, DNNs face the challenge to continually retrain themselves according to the tasks on different edge devices. Federated continual learning is a promising technique that offers partial solutions but yet to overcome the following difficulties: the significant accuracy loss due to the limited on-device processing, the negative knowledge transfer caused by the limited communication of non-IID data, and the limited scalability on the tasks and edge devices. In this paper, we propose FedKNOW, an accurate and scalable federated continual learning framework, via a novel concept of signature task knowledge. FedKNOW is a client side solution that continuously extracts and integrates the knowledge of signature tasks which are highly influenced by the current task. Each client of FedKNOW is composed of a knowledge extractor, a gradient restorer and, most importantly, a gradient integrator. Upon training for a new task, the gradient integrator ensures the prevention of catastrophic forgetting and mitigation of negative knowledge transfer by effectively combining signature tasks identified from the past local tasks and other clients' current tasks through the global model. We implement FedKNOW in PyTorch and extensively evaluate it against state-of-the-art techniques using popular federated continual learning benchmarks. Extensive evaluation results on heterogeneous edge devices show that FedKNOW improves model accuracy by 63.24% without increasing model training time, reduces communication cost by 34.28%, and achieves more improvements under difficult scenarios such as large numbers of tasks or clients, and training different complex networks.
translated by 谷歌翻译