了解机器学习模型如何推广到新环境是其安全部署的关键部分。最近的工作提出了各种复杂性度量,这些度量直接预测或理论上结合了模型的概括能力。但是,这些方法依赖于在实践中并不总是满足的一系列强有力的假设。受到有限的设置,可以采用现有措施的有限设置,我们提出了一种基于分类器的局部歧管平滑度的新颖复杂度度量。我们将局部歧管平滑度定义为分类器对给定测试点周围歧管社区中扰动的输出敏感性。直觉上,对这些扰动不太敏感的分类器应更好地概括。为了估计平滑度,我们使用数据扩展进行采样点,并测量分类为多数类的这些点的分数。我们的方法仅需要选择数据增强方法,并且对模型或数据分布没有其他假设,这意味着即使在现有方法无法使用的情况下,也可以在室外(OOD)设置中应用。在图像分类,情感分析和自然语言推断中的鲁棒性基准的实验中,我们证明了我们在100多个火车/测试域对上评估的超过3,000个模型上的流形光滑度量与实际的OOD概括之间存在很强而牢固的相关性。
translated by 谷歌翻译
最近,Miller等。结果表明,模型的分布(ID)精度与几个OOD基准上的分布(OOD)精度具有很强的线性相关性 - 一种将它们称为“准确性”的现象。虽然一种用于模型选择的有用工具(即,最有可能执行最佳OOD的模型是具有最高ID精度的模型),但此事实无助于估计模型的实际OOD性能,而无需访问标记的OOD验证集。在本文中,我们展示了一种类似但令人惊讶的现象,也与神经网络分类器对之间的一致性一致:每当在线准确性时,我们都会观察到任何两个神经网络的预测之间的OOD一致性(具有潜在的不同架构)还观察到与他们的ID协议有很强的线性相关性。此外,我们观察到OOD与ID协议的斜率和偏置与OOD与ID准确性的偏差非常匹配。我们称之为“协议”的现象具有重要的实际应用:没有任何标记的数据,我们可以预测分类器的OOD准确性},因为只需使用未标记的数据就可以估算OOD一致性。我们的预测算法在同意在线达成的变化中都优于先前的方法,而且令人惊讶的是,当准确性不在线上时。这种现象还为深度神经网络提供了新的见解:与在线的准确性不同,一致性似乎仅适用于神经网络分类器。
translated by 谷歌翻译
Accurate uncertainty quantification is a major challenge in deep learning, as neural networks can make overconfident errors and assign high confidence predictions to out-of-distribution (OOD) inputs. The most popular approaches to estimate predictive uncertainty in deep learning are methods that combine predictions from multiple neural networks, such as Bayesian neural networks (BNNs) and deep ensembles. However their practicality in real-time, industrial-scale applications are limited due to the high memory and computational cost. Furthermore, ensembles and BNNs do not necessarily fix all the issues with the underlying member networks. In this work, we study principled approaches to improve uncertainty property of a single network, based on a single, deterministic representation. By formalizing the uncertainty quantification as a minimax learning problem, we first identify distance awareness, i.e., the model's ability to quantify the distance of a testing example from the training data, as a necessary condition for a DNN to achieve high-quality (i.e., minimax optimal) uncertainty estimation. We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs with two simple changes: (1) applying spectral normalization to hidden weights to enforce bi-Lipschitz smoothness in representations and (2) replacing the last output layer with a Gaussian process layer. On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection. Furthermore, SNGP provides complementary benefits to popular techniques such as deep ensembles and data augmentation, making it a simple and scalable building block for probabilistic deep learning. Code is open-sourced at https://github.com/google/uncertainty-baselines
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
人工智能的最新趋势是将验证的模型用于语言和视觉任务,这些模型已经实现了非凡的表现,但也令人困惑。因此,以各种方式探索这些模型的能力对该领域至关重要。在本文中,我们探讨了模型的可靠性,在其中我们将可靠的模型定义为一个不仅可以实现强大的预测性能,而且在许多涉及不确定性(例如选择性预测,开放式设置识别)的决策任务上,在许多决策任务上表现出色,而且表现良好。强大的概括(例如,准确性和适当的评分规则,例如在分布数据集中和分发数据集上的对数可能性)和适应性(例如,主动学习,几乎没有射击不确定性)。我们设计了40个数据集的10种任务类型,以评估视觉和语言域上可靠性的不同方面。为了提高可靠性,我们分别开发了VIT-PLEX和T5-PLEX,分别针对视觉和语言方式扩展了大型模型。 PLEX极大地改善了跨可靠性任务的最先进,并简化了传统协议,因为它可以改善开箱即用的性能,并且不需要设计分数或为每个任务调整模型。我们演示了高达1B参数的模型尺寸的缩放效果,并预处理数据集大小最多4B示例。我们还展示了PLEX在具有挑战性的任务上的功能,包括零射门的开放式识别,主动学习和对话语言理解中的不确定性。
translated by 谷歌翻译
最近证明,接受SGD训练的神经网络优先依赖线性预测的特征,并且可以忽略复杂的,同样可预测的功能。这种简单性偏见可以解释他们缺乏分布(OOD)的鲁棒性。学习任务越复杂,统计工件(即选择偏见,虚假相关性)的可能性就越大比学习的机制更简单。我们证明可以减轻简单性偏差并改善了OOD的概括。我们使用对其输入梯度对齐的惩罚来训练一组类似的模型以不同的方式拟合数据。我们从理论和经验上展示了这会导致学习更复杂的预测模式的学习。 OOD的概括从根本上需要超出I.I.D.示例,例如多个培训环境,反事实示例或其他侧面信息。我们的方法表明,我们可以将此要求推迟到独立的模型选择阶段。我们获得了SOTA的结果,可以在视觉域偏置数据和概括方面进行视觉识别。该方法 - 第一个逃避简单性偏见的方法 - 突出了需要更好地理解和控制深度学习中的归纳偏见。
translated by 谷歌翻译
分发班次的稳健性对于部署现实世界中的机器学习模型至关重要。尽管如此必要的,但在定义导致这些变化的潜在机制以及评估跨多个不同的分发班次的稳健性的潜在机制很少。为此,我们介绍了一种框架,可实现各种分布换档的细粒度分析。我们通过评估在合成和现实世界数据集中分为五个类别的19个不同的方法来提供对当前最先进的方法的整体分析。总的来说,我们训练超过85架模型。我们的实验框架可以很容易地扩展到包括新方法,班次和数据集。我们发现,与以前的工作〜\ citep {gulrajani20}不同,该进度已经通过标准的ERM基线进行;特别是,在许多情况下,预先训练和增强(学习或启发式)提供了大的收益。但是,最好的方法在不同的数据集和班次上不一致。
translated by 谷歌翻译
现实世界机器学习部署的特点是源(训练)和目标(测试)分布之间的不匹配,可能导致性能下降。在这项工作中,我们研究了仅使用标记的源数据和未标记的目标数据来预测目标域精度的方法。我们提出了平均阈值的置信度(A​​TC),一种实用的方法,用于了解模型的置信度的阈值,预测精度作为模型置信度超过该阈值的未标记示例的分数。 ATC优于多种模型架构的先前方法,分发班次类型(例如,由于综合损坏,数据集再现或新颖的群体)和数据集(野外,想象成,品种,CNIST)。在我们的实验中,ATC估计目标性能$ 2 $ 2美元 - 比以前的方法更准确地获得4美元。我们还探讨了问题的理论基础,证明通常,识别精度与识别最佳预测因子一样难以识别,因此,任何方法的功效都依赖于(可能是未列区)假设对移位的性质。最后,在一些玩具分布中分析了我们的方法,我们提供了有关其工作时的见解。
translated by 谷歌翻译
由于分布式概括是一个普遍不足的问题,因此在不同的研究计划中研究了各种代理目标(例如,校准,对抗性鲁棒性,算法腐败,跨轮班的不变性),导致不同的研究计划,从而提出不同的建议。在共享相同的抱负目标的同时,这些方法从未在相同的实验条件下对真实数据进行测试。在本文中,我们对以前的工作进行了统一的看法,突出了我们经验解决的消息差异,并提供有关如何衡量模型鲁棒性以及如何改进它的建议。为此,我们收集了172个公开可用的数据集对,用于培训和分布外评估准确性,校准错误,对抗性攻击,环境不变性和合成腐败。我们从九个不同的架构中的九个不同的架构中微调了31k网络。我们的发现证实,分布的精度往往会共同增加,但表明它们的关系在很大程度上取决于数据集依赖性,并且通常比以前较小的规模研究所提出的更加细微和更复杂。
translated by 谷歌翻译
尽管对检测分配(OOD)示例的重要性一致,但就OOD示例的正式定义几乎没有共识,以及如何最好地检测到它们。我们将这些示例分类为它们是否表现出背景换档或语义移位,并发现ood检测,模型校准和密度估计(文本语言建模)的两个主要方法,对这些类型的ood数据具有不同的行为。在14对分布和ood英语自然语言理解数据集中,我们发现密度估计方法一致地在背景移位设置中展开校准方法,同时在语义移位设置中执行更糟。此外,我们发现两种方法通常都无法检测到挑战数据中的示例,突出显示当前方法的弱点。由于没有单个方法在所有设置上都效果很好,因此在评估不同的检测方法时,我们的结果呼叫了OOD示例的明确定义。
translated by 谷歌翻译
Pre-trained language models (PLMs) are known to improve the generalization performance of natural language understanding models by leveraging large amounts of data during the pre-training phase. However, the out-of-distribution (OOD) generalization problem remains a challenge in many NLP tasks, limiting the real-world deployment of these methods. This paper presents the first attempt at creating a unified benchmark named GLUE-X for evaluating OOD robustness in NLP models, highlighting the importance of OOD robustness and providing insights on how to measure the robustness of a model and how to improve it. The benchmark includes 13 publicly available datasets for OOD testing, and evaluations are conducted on 8 classic NLP tasks over 19 popularly used PLMs. Our findings confirm the need for improved OOD accuracy in NLP tasks, as significant performance degradation was observed in all settings compared to in-distribution (ID) accuracy.
translated by 谷歌翻译
开放式识别使深度神经网络(DNN)能够识别未知类别的样本,同时在已知类别的样本上保持高分类精度。基于自动编码器(AE)和原型学习的现有方法在处理这项具有挑战性的任务方面具有巨大的潜力。在这项研究中,我们提出了一种新的方法,称为类别特定的语义重建(CSSR),该方法整合了AE和原型学习的力量。具体而言,CSSR用特定于类的AE表示的歧管替代了原型点。与传统的基于原型的方法不同,CSSR在单个AE歧管上的每个已知类模型,并通过AE的重建误差来测量类归属感。特定于类的AE被插入DNN主链的顶部,并重建DNN而不是原始图像所学的语义表示。通过端到端的学习,DNN和AES互相促进,以学习歧视性和代表性信息。在多个数据集上进行的实验结果表明,所提出的方法在封闭式和开放式识别中都达到了出色的性能,并且非常简单且灵活地将其纳入现有框架中。
translated by 谷歌翻译
部署在野外的机器学习系统通常在源分布上培训,但部署在不同的目标分布上。未标记的数据可以是用于缓解这些分布班次的强大的利用点,因为它通常比标记数据更具可用。然而,未标记数据的现有分配转换基准不反映现实世界应用中出现的方案的广度。在这项工作中,我们介绍了Wilds 2.0更新,该更新在分发转移的野外基准中扩展了10个数据集中的8个,以包括将在部署中逼真获得的策划未标记数据。为了保持一致性,标记的培训,验证和测试集以及评估度量与原始野外基准中的标记与评估度量完全相同。这些数据集涵盖了广泛的应用程序(从组织学到野生动物保护),任务(分类,回归和检测)和方式(照片,卫星图像,显微镜载玻片,文本,分子图)。我们系统地基准测试最先进的方法,可以利用未标记的数据,包括域不变,自我培训和自我监督方法,并表明他们在野外的成功2.0是有限的。为了方便方法开发和评估,我们提供了一个自动化数据加载的开源包,并包含本文中使用的所有模型架构和方法。代码和排行榜可在https://wilds.stanford.edu获得。
translated by 谷歌翻译
Deep neural networks have attained remarkable performance when applied to data that comes from the same distribution as that of the training set, but can significantly degrade otherwise. Therefore, detecting whether an example is out-of-distribution (OoD) is crucial to enable a system that can reject such samples or alert users. Recent works have made significant progress on OoD benchmarks consisting of small image datasets. However, many recent methods based on neural networks rely on training or tuning with both in-distribution and out-of-distribution data. The latter is generally hard to define a-priori, and its selection can easily bias the learning. We base our work on a popular method ODIN 1 [21], proposing two strategies for freeing it from the needs of tuning with OoD data, while improving its OoD detection performance. We specifically propose to decompose confidence scoring as well as a modified input pre-processing method. We show that both of these significantly help in detection performance. Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference in the difficulty of the problem, providing an analysis of when ODIN-like strategies do or do not work.
translated by 谷歌翻译
作为研究界,我们仍然缺乏对对抗性稳健性的进展的系统理解,这通常使得难以识别训练强大模型中最有前途的想法。基准稳健性的关键挑战是,其评估往往是出错的导致鲁棒性高估。我们的目标是建立对抗性稳健性的标准化基准,尽可能准确地反映出考虑在合理的计算预算范围内所考虑的模型的稳健性。为此,我们首先考虑图像分类任务并在允许的型号上引入限制(可能在将来宽松)。我们评估了与AutoAtrack的对抗鲁棒性,白和黑箱攻击的集合,最近在大规模研究中显示,与原始出版物相比,改善了几乎所有稳健性评估。为防止对自动攻击进行新防御的过度适应,我们欢迎基于自适应攻击的外部评估,特别是在自动攻击稳健性潜在高估的地方。我们的排行榜,托管在https://robustbench.github.io/,包含120多个模型的评估,并旨在反映在$ \ ell_ \ infty $的一套明确的任务上的图像分类中的当前状态 - 和$ \ ell_2 $ -Threat模型和共同腐败,未来可能的扩展。此外,我们开源源是图书馆https://github.com/robustbench/robustbench,可以提供对80多个强大模型的统一访问,以方便他们的下游应用程序。最后,根据收集的模型,我们分析了稳健性对分布换档,校准,分配检测,公平性,隐私泄漏,平滑度和可转移性的影响。
translated by 谷歌翻译
The ability to quickly and accurately identify covariate shift at test time is a critical and often overlooked component of safe machine learning systems deployed in high-risk domains. While methods exist for detecting when predictions should not be made on out-of-distribution test examples, identifying distributional level differences between training and test time can help determine when a model should be removed from the deployment setting and retrained. In this work, we define harmful covariate shift (HCS) as a change in distribution that may weaken the generalization of a predictive model. To detect HCS, we use the discordance between an ensemble of classifiers trained to agree on training data and disagree on test data. We derive a loss function for training this ensemble and show that the disagreement rate and entropy represent powerful discriminative statistics for HCS. Empirically, we demonstrate the ability of our method to detect harmful covariate shift with statistical certainty on a variety of high-dimensional datasets. Across numerous domains and modalities, we show state-of-the-art performance compared to existing methods, particularly when the number of observed test samples is small.
translated by 谷歌翻译
众所周知,过度参数化的深网能够完全拟合训练数据,同时显示出良好的概括性能。从线性回归上的直觉中得出的常见范式表明,大型网络甚至可以插入嘈杂的数据,而不会显着偏离地面真相信号。目前,缺少这种现象的精确表征。在这项工作中,我们介绍了深网的损失景观清晰度的实证研究,因为我们系统地控制了模型参数和训练时期的数量。我们将研究扩展到培训数据的街区以及清洁和嘈杂标记的样本。我们的发现表明,输入空间中的损失清晰度均遵循模型和时期的双重下降,在嘈杂的标签周围观察到了较差的峰值。与现有直觉相比,小型插值模型尤其适合干净和嘈杂的数据,但大型模型表达了平稳而平坦的损失景观。
translated by 谷歌翻译
提高深神经网络(DNN)对分布(OOD)数据的准确性对于在现实世界应用中接受深度学习(DL)至关重要。已经观察到,分布(ID)与OOD数据的准确性遵循线性趋势和模型表现优于该基线非常罕见(并被称为“有效鲁棒”)。最近,已经开发出一些有前途的方法来提高OOD的鲁棒性:模型修剪,数据增强和结合或零射门评估大型预审预周化模型。但是,仍然对观察有效鲁棒性所需的OOD数据和模型属性的条件尚无清晰的了解。我们通过对多种方法进行全面的经验研究来解决这个问题,这些方法已知会影响OOD鲁棒性,对CIFAR-10和Imagenet的广泛自然和合成分布转移。特别是,我们通过傅立叶镜头观察“有效的鲁棒性难题”,并询问模型和OOD数据的光谱特性如何影响相应的有效鲁棒性。我们发现这个傅立叶镜头提供了一些深入的了解,为什么某些强大的模型,尤其是夹家族的模型,可以实现稳健性。但是,我们的分析还清楚地表明,没有已知的指标始终是对OOD鲁棒性的最佳解释(甚至是强烈的解释)。因此,为了帮助未来对OOD难题的研究,我们通过引入一组预处理的模型(固定的模型),以有效的稳健性(可公开可鲁棒)解决了差距,这些模型(固有的模型)以及不同级别的OOD稳健性。
translated by 谷歌翻译
In many task settings, text classification models are likely to encounter examples from novel classes on which they cannot predict correctly. Selective prediction, in which models abstain on low-confidence examples, provides a possible solution, but existing models are often overly confident on OOD examples. To remedy this overconfidence, we introduce Contrastive Novelty-Augmented Learning (CoNAL), a two-step method that generates OOD examples representative of novel classes, then trains to decrease confidence on them. First, we generate OOD examples by prompting a large language model twice: we prompt it to enumerate relevant novel labels, then generate examples from each novel class matching the task format. Second, we train our classifier with a novel contrastive objective that encourages lower confidence on generated OOD examples than training examples. When trained with CoNAL, classifiers improve in their ability to detect and abstain on OOD examples over prior methods by an average of 2.3% AUAC and 5.5% AUROC across 4 NLP datasets, with no cost to in-distribution accuracy.
translated by 谷歌翻译
In the past years, deep learning has seen an increase of usage in the domain of histopathological applications. However, while these approaches have shown great potential, in high-risk environments deep learning models need to be able to judge their own uncertainty and be able to reject inputs when there is a significant chance of misclassification. In this work, we conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole-Slide-Images under domain shift using the H\&E stained Camelyon17 breast cancer dataset. Although it is known that histopathological data can be subject to strong domain shift and label noise, to our knowledge this is the first work that compares the most common methods for uncertainty estimation under these aspects. In our experiments, we compare Stochastic Variational Inference, Monte-Carlo Dropout, Deep Ensembles, Test-Time Data Augmentation as well as combinations thereof. We observe that ensembles of methods generally lead to higher accuracies and better calibration and that Test-Time Data Augmentation can be a promising alternative when choosing an appropriate set of augmentations. Across methods, a rejection of the most uncertain tiles leads to a significant increase in classification accuracy on both in-distribution as well as out-of-distribution data. Furthermore, we conduct experiments comparing these methods under varying conditions of label noise. We observe that the border regions of the Camelyon17 dataset are subject to label noise and evaluate the robustness of the included methods against different noise levels. Lastly, we publish our code framework to facilitate further research on uncertainty estimation on histopathological data.
translated by 谷歌翻译