尽管通过自我监督的代表学习的重要改进导致了从未标记数据学习时,但不存在任何方法,以解释影响学习的代表性的东西。我们通过拟议的方法来解决这一需求,放松,这是一种基于归因的归因的解释的方法。我们的方法还可以在其解释中模拟不确定性,这对于产生值得信赖的解释至关重要。放松通过测量输入和屏蔽版本之间的表示空间中的相似性来解释表示,提供直观的解释并显着优于基于梯度的基线。我们提供了对使用监督和无监督学习培训的特征提取器的新颖分析,提供了对不同学习策略的见解。最后,我们说明了在多视图聚类中放松的可用性,并强调结合不确定性对于提供低复杂性解释是必不可少的,这对解释表示来说至关重要。
translated by 谷歌翻译
CT肝图像的基于内容的图像检索(CBIR)的深度基于学习的方法是一个积极的研究领域,但受到了一些关键局限性。首先,它们非常依赖标签的数据,这可能是具有挑战性的,而且获取成本很高。其次,它们缺乏透明度和解释性,这限制了深CBIR系统的可信度。我们通过(1)提出一个自制的学习框架来解决这些局限性,该框架将领域知识纳入培训过程中,以及(2)在CT肝图像的CBIR背景下提供首次表示学习解释性分析。结果表明,与几个指标的标准自我监督方法相比,性能的提高,并且在跨数据集的概括方面得到了改善。此外,我们在CBIR的背景下进行了首次表示学习性分析,该分析揭示了对特征提取过程的新见解。最后,我们通过盘问CBIR进行了一个案例研究,该案例证明了我们提出的框架的可用性。我们认为,我们提出的框架可以在创建可信赖的深层CBIR系统中发挥至关重要的作用,这些系统可以成功利用未标记的数据。
translated by 谷歌翻译
本文提出了一种基于Hilbert-Schmidt独立标准(HSIC)的新有效的黑盒归因方法,这是一种基于再现核Hilbert Spaces(RKHS)的依赖度量。 HSIC测量了基于分布的内核的输入图像区域之间的依赖性和模型的输出。因此,它提供了由RKHS表示功能丰富的解释。可以非常有效地估计HSIC,与其他黑盒归因方法相比,大大降低了计算成本。我们的实验表明,HSIC的速度比以前的最佳黑盒归因方法快8倍,同时忠实。确实,我们改进或匹配了黑盒和白框归因方法的最新方法,用于具有各种最近的模型体系结构的Imagenet上的几个保真度指标。重要的是,我们表明这些进步可以被转化为有效而忠实地解释诸如Yolov4之类的对象检测模型。最后,我们通过提出一种新的内核来扩展传统的归因方法,从而实现基于HSIC的重要性分数的正交分解,从而使我们不仅可以评估每个图像贴片的重要性,还可以评估其成对相互作用的重要性。
translated by 谷歌翻译
我们描述了一种新颖的归因方法,它基于敏感性分析并使用Sobol指数。除了模拟图像区域的个人贡献之外,索尔索尔指标提供了一种有效的方法来通过方差镜头捕获图像区域与其对神经网络的预测的贡献之间的高阶相互作用。我们描述了一种通过使用扰动掩模与有效估计器耦合的扰动掩模来计算用于高维问题的这些指标的方法,以处理图像的高维度。重要的是,我们表明,与其他黑盒方法相比,该方法对视觉(和语言模型)的标准基准测试的标准基准有利地导致了有利的分数 - 甚至超过最先进的白色的准确性 - 需要访问内部表示的箱方法。我们的代码是免费的:https://github.com/fel-thomas/sobol-attribution-method
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
自我监督的视觉学习彻底改变了深度学习,成为域中的下一个重大挑战,并通过大型计算机视觉基准的监督方法迅速缩小了差距。随着当前的模型和培训数据成倍增长,解释和理解这些模型变得关键。我们研究了视力任务的自我监督学习领域中可解释的人工智能的问题,并提出了了解经过自学训练的网络及其内部工作的方法。鉴于自我监督的视觉借口任务的巨大多样性,我们缩小了对理解范式的关注,这些范式从同一图像的两种观点中学习,主要是旨在了解借口任务。我们的工作重点是解释相似性学习,并且很容易扩展到所有其他借口任务。我们研究了两个流行的自我监督视觉模型:Simclr和Barlow Twins。我们总共开发了六种可视化和理解这些模型的方法:基于扰动的方法(条件闭塞,上下文无形的条件闭塞和成对的闭塞),相互作用-CAM,特征可视化,模型差异可视化,平均变换和像素无形。最后,我们通过将涉及单个图像的监督图像分类系统量身定制的众所周知的评估指标来评估这些解释,并将其涉及两个图像的自我监督学习领域。代码为:https://github.com/fawazsammani/xai-ssl
translated by 谷歌翻译
Deep neural networks are being used increasingly to automate data analysis and decision making, yet their decision-making process is largely unclear and is difficult to explain to the end users. In this paper, we address the problem of Explainable AI for deep neural networks that take images as input and output a class probability. We propose an approach called RISE that generates an importance map indicating how salient each pixel is for the model's prediction. In contrast to white-box approaches that estimate pixel importance using gradients or other internal network state, RISE works on blackbox models. It estimates importance empirically by probing the model with randomly masked versions of the input image and obtaining the corresponding outputs. We compare our approach to state-of-the-art importance extraction methods using both an automatic deletion/insertion metric and a pointing metric based on human-annotated object segments. Extensive experiments on several benchmark datasets show that our approach matches or exceeds the performance of other methods, including white-box approaches.
translated by 谷歌翻译
最近的机器学习趋势一直是通过解释自己的预测的能力来丰富学习模式。到目前为止,迄今为止,可解释的AI(XAI)的新兴领域主要集中在监督学习,特别是深度神经网络分类器。然而,在许多实际问题中,未给出标签信息,并且目标是发现数据的基础结构,例如,其群集。虽然存在强大的方法来提取数据中的群集结构,但它们通常不会回答为什么已分配给给定群集的某些数据点的原因。我们提出了一种新的框架,它首次以有效可靠的方式在输入特征方面解释群集分配。它基于小说洞察力,即聚类模型可以被重写为神经网络 - 或“神经化”。然后,所获得的网络的集群预测可以快速准确地归因于输入特征。几个陈列室展示了我们的方法评估学习集群质量的能力,并从分析的数据和表示中提取新颖的见解。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
许多过去的作品旨在通过监督特征重要性(通过模型解释技术估算)通过人类注释(例如重要图像区域的亮点)来改善模型中的视觉推理。但是,最近的工作表明,即使在随机的监督下,对视觉问题答案(VQA)任务的特征重要性(FI)监督的绩效收益也会持续下去,这表明这些方法不会有意义地将模型FI与人类FI保持一致。在本文中,我们表明模型FI监督可以有意义地提高VQA模型的准确性,并通过优化四个关键模型目标来提高几个正确的右季节(RRR)指标的性能:(1)给出的准确预测有限。但是足够的信息(足够); (2)没有重要信息(不确定性)的最大 - 凝集预测; (3)预测不重要的特征变化(不变性)的不变性; (4)模型FI解释与人类FI解释(合理性)之间的对齐。我们的最佳性能方法,视觉功能重要性监督(Visfis),就分布和分布的精度而言,在基准VQA数据集上优于基准VQA数据集的强大基准。尽管过去的工作表明,提高准确性的机制是通过改善解释的合理性,但我们表明这种关系取决于忠诚的解释(解释是否真的代表了模型的内部推理)。当解释是合理的和忠实的,而不是当它们是合理而不是忠实的时候,预测更为准确。最后,我们表明,令人惊讶的是,在控制模型的分布精度时,RRR指标不能预测分布模型的准确性,这使这些指标的价值质疑评估模型推理的价值。所有支持代码均可在https://github.com/zfying/disfis上获得
translated by 谷歌翻译
Explainable AI transforms opaque decision strategies of ML models into explanations that are interpretable by the user, for example, identifying the contribution of each input feature to the prediction at hand. Such explanations, however, entangle the potentially multiple factors that enter into the overall complex decision strategy. We propose to disentangle explanations by finding relevant subspaces in activation space that can be mapped to more abstract human-understandable concepts and enable a joint attribution on concepts and input features. To automatically extract the desired representation, we propose new subspace analysis formulations that extend the principle of PCA and subspace analysis to explanations. These novel analyses, which we call principal relevant component analysis (PRCA) and disentangled relevant subspace analysis (DRSA), optimize relevance of projected activations rather than the more traditional variance or kurtosis. This enables a much stronger focus on subspaces that are truly relevant for the prediction and the explanation, in particular, ignoring activations or concepts to which the prediction model is invariant. Our approach is general enough to work alongside common attribution techniques such as Shapley Value, Integrated Gradients, or LRP. Our proposed methods show to be practically useful and compare favorably to the state of the art as demonstrated on benchmarks and three use cases.
translated by 谷歌翻译
无法解释的黑框模型创建场景,使异常引起有害响应,从而造成不可接受的风险。这些风险促使可解释的人工智能(XAI)领域通过评估黑盒神经网络中的局部解释性来改善信任。不幸的是,基本真理对于模型的决定不可用,因此评估仅限于定性评估。此外,可解释性可能导致有关模型或错误信任感的不准确结论。我们建议通过探索Black-Box模型的潜在特征空间来从用户信任的有利位置提高XAI。我们提出了一种使用典型的几弹网络的Protoshotxai方法,该方法探索了不同类别的非线性特征之间的对比歧管。用户通过扰动查询示例的输入功能并记录任何类的示例子集的响应来探索多种多样。我们的方法是第一个可以将其扩展到很少的网络的本地解释的XAI模型。我们将ProtoShotxai与MNIST,Omniglot和Imagenet的最新XAI方法进行了比较,以进行定量和定性,Protoshotxai为模型探索提供了更大的灵活性。最后,Protoshotxai还展示了对抗样品的新颖解释和检测。
translated by 谷歌翻译
Explainability has been widely stated as a cornerstone of the responsible and trustworthy use of machine learning models. With the ubiquitous use of Deep Neural Network (DNN) models expanding to risk-sensitive and safety-critical domains, many methods have been proposed to explain the decisions of these models. Recent years have also seen concerted efforts that have shown how such explanations can be distorted (attacked) by minor input perturbations. While there have been many surveys that review explainability methods themselves, there has been no effort hitherto to assimilate the different methods and metrics proposed to study the robustness of explanations of DNN models. In this work, we present a comprehensive survey of methods that study, understand, attack, and defend explanations of DNN models. We also present a detailed review of different metrics used to evaluate explanation methods, as well as describe attributional attack and defense methods. We conclude with lessons and take-aways for the community towards ensuring robust explanations of DNN model predictions.
translated by 谷歌翻译
无监督的黑盒模型要挑战。实际上,大多数现有的解释性方法都要求标签来选择要解释的黑框输出的组件。在没有标签的情况下,黑框输出通常是表示向量,其组件的分量与任何有意义的数量不符。因此,选择哪些组件在无标签的无监督/自我监督的设置中是一个重要但未解决的问题。为了弥合文献中的这一差距,我们介绍了事后解释技术的两个关键扩展:(1)无标签的功能重要性以及(2)无标签的示例分别重要的示例,这些示例分别强调了黑盒的有影响力的特征和训练示例在推理时间构建表示。我们证明,我们的扩展可以成功实现,以围绕许多现有功能和示例重要性方法的简单包装器实现。我们通过定性和定量的比较来说明我们无标记的解释性范式的实用性,该范式对经过不同无监督任务的各种自动编码器学到的表示空间进行了定量比较。
translated by 谷歌翻译
Saliency methods compute heat maps that highlight portions of an input that were most {\em important} for the label assigned to it by a deep net. Evaluations of saliency methods convert this heat map into a new {\em masked input} by retaining the $k$ highest-ranked pixels of the original input and replacing the rest with \textquotedblleft uninformative\textquotedblright\ pixels, and checking if the net's output is mostly unchanged. This is usually seen as an {\em explanation} of the output, but the current paper highlights reasons why this inference of causality may be suspect. Inspired by logic concepts of {\em completeness \& soundness}, it observes that the above type of evaluation focuses on completeness of the explanation, but ignores soundness. New evaluation metrics are introduced to capture both notions, while staying in an {\em intrinsic} framework -- i.e., using the dataset and the net, but no separately trained nets, human evaluations, etc. A simple saliency method is described that matches or outperforms prior methods in the evaluations. Experiments also suggest new intrinsic justifications, based on soundness, for popular heuristic tricks such as TV regularization and upsampling.
translated by 谷歌翻译
当代预测模型很难解释,因为他们的深网利用了输入要素之间的许多复杂关系。这项工作通过测量相关特征对网络相对于输入的功能熵的贡献,提出了模型可解释性的理论框架。我们依赖于对数 - 索波列夫的不等式,该不平等是通过功能性渔民信息与数据的协方差界定功能熵的。这提供了一种衡量特征子集对决策功能的信息贡献的原则方法。通过广泛的实验,我们表明我们的方法超过了基于图像,文本和音频等各种数据信号的现有基于基于可解释性抽样的方法。
translated by 谷歌翻译
深度学习已经变得过于复杂,并且在解决图像分类,对象检测等若干古典问题方面享有恒星的成功。已经提出了几种解释这些决定的方法。由于它们不利用模型的内部来解释该决定,为生成显着性图产生显着性图的方法特别感到很有趣。大多数黑匣子方法扰乱了输入并观察输出的变化。我们将显着的图形制定为顺序搜索问题,并利用加强学习(RL)来累积来自输入图像的证据,最强烈地支持分类器的决策。这种战略鼓励智能地搜索扰动,这将导致高质量的解释。虽然成功的黑匣子解释方法需要依靠重计算并遭受小的样本近似,但我们的方法学到的确定性政策使得在推理期间更有效。三个基准数据集的实验证明了在不损害性能的情况下推动了推理时间的提议方法的优越性。项目页面:https://cvir.github.io/projects/rexl.html
translated by 谷歌翻译
As the societal impact of Deep Neural Networks (DNNs) grows, the goals for advancing DNNs become more complex and diverse, ranging from improving a conventional model accuracy metric to infusing advanced human virtues such as fairness, accountability, transparency (FaccT), and unbiasedness. Recently, techniques in Explainable Artificial Intelligence (XAI) are attracting considerable attention, and have tremendously helped Machine Learning (ML) engineers in understanding AI models. However, at the same time, we started to witness the emerging need beyond XAI among AI communities; based on the insights learned from XAI, how can we better empower ML engineers in steering their DNNs so that the model's reasonableness and performance can be improved as intended? This article provides a timely and extensive literature overview of the field Explanation-Guided Learning (EGL), a domain of techniques that steer the DNNs' reasoning process by adding regularization, supervision, or intervention on model explanations. In doing so, we first provide a formal definition of EGL and its general learning paradigm. Secondly, an overview of the key factors for EGL evaluation, as well as summarization and categorization of existing evaluation procedures and metrics for EGL are provided. Finally, the current and potential future application areas and directions of EGL are discussed, and an extensive experimental study is presented aiming at providing comprehensive comparative studies among existing EGL models in various popular application domains, such as Computer Vision (CV) and Natural Language Processing (NLP) domains.
translated by 谷歌翻译
由于黑匣子的解释越来越多地用于在高赌注设置中建立模型可信度,重要的是确保这些解释准确可靠。然而,事先工作表明,最先进的技术产生的解释是不一致的,不稳定的,并且提供了对它们的正确性和可靠性的极少了解。此外,这些方法也在计算上效率低下,并且需要显着的超参数调谐。在本文中,我们通过开发一种新的贝叶斯框架来涉及用于产生当地解释以及相关的不确定性来解决上述挑战。我们将本框架实例化以获取贝叶斯版本的石灰和kernelshap,其为特征重要性输出可靠的间隔,捕获相关的不确定性。由此产生的解释不仅使我们能够对其质量进行具体推论(例如,有95%的几率是特征重要性在给定范围内),但也是高度一致和稳定的。我们执行了一个详细的理论分析,可以利用上述不确定性来估计对样品的扰动有多少,以及如何进行更快的收敛。这项工作首次尝试在一次拍摄中通过流行的解释方法解决几个关键问题,从而以计算上有效的方式产生一致,稳定和可靠的解释。具有多个真实世界数据集和用户研究的实验评估表明,提出的框架的功效。
translated by 谷歌翻译
与此同时,在可解释的人工智能(XAI)的研究领域中,已经开发了各种术语,动机,方法和评估标准。随着XAI方法的数量大大增长,研究人员以及从业者以及从业者需要一种方法:掌握主题的广度,比较方法,并根据特定用例所需的特征选择正确的XAI方法语境。在文献中,可以找到许多不同细节水平和深度水平的XAI方法分类。虽然他们经常具有不同的焦点,但它们也表现出许多重叠点。本文统一了这些努力,并提供了XAI方法的分类,这是关于目前研究中存在的概念的概念。在结构化文献分析和元研究中,我们识别并审查了XAI方法,指标和方法特征的50多个最引用和最新的调查。总结在调查调查中,我们将文章的术语和概念合并为统一的结构化分类。其中的单一概念总计超过50个不同的选择示例方法,我们相应地分类。分类学可以为初学者,研究人员和从业者提供服务作为XAI方法特征和方面的参考和广泛概述。因此,它提供了针对有针对性的,用例导向的基础和上下文敏感的未来研究。
translated by 谷歌翻译