As Deep Neural Networks (DNNs) are increasingly deployed in safety critical and privacy sensitive applications such as autonomous driving and biometric authentication, it is critical to understand the fault-tolerance nature of DNNs. Prior work primarily focuses on metrics such as Failures In Time (FIT) rate and the Silent Data Corruption (SDC) rate, which quantify how often a device fails. Instead, this paper focuses on quantifying the DNN accuracy given that a transient error has occurred, which tells us how well a network behaves when a transient error occurs. We call this metric Resiliency Accuracy (RA). We show that existing RA formulation is fundamentally inaccurate, because it incorrectly assumes that software variables (model weights/activations) have equal faulty probability under hardware transient faults. We present an algorithm that captures the faulty probabilities of DNN variables under transient faults and, thus, provides correct RA estimations validated by hardware. To accelerate RA estimation, we reformulate RA calculation as a Monte Carlo integration problem, and solve it using importance sampling driven by DNN specific heuristics. Using our lightweight RA estimation method, we show that transient faults lead to far greater accuracy degradation than what todays DNN resiliency tools estimate. We show how our RA estimation tool can help design more resilient DNNs by integrating it with a Network Architecture Search framework.
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
对象检测神经网络模型需要在高度动态和安全至关重要的环境(例如自动驾驶或机器人技术)中可靠地执行。因此,在意外硬件故障(例如软误差)下验证检测的鲁棒性至关重要,这些故障可能会影响系统感知模块。基于平均精度的标准指标会在对象级别而不是图像级别产生模型漏洞估计。正如我们在本文中所显示的那样,这并不能提供直观或代表性的指标,表明是由基础记忆中的位翻转引起的无声数据损坏的安全性影响,而是导致典型断层诱导危害的过度估计或低估。为了关注与安全相关的实时应用程序,我们提出了一个新的度量IVMOD(图像漏洞测量的对象检测),以基于错误的图像检测(FPS)或假阴性为基于图像的对象检测,以量化漏洞(FNS)对象,结合严重性分析。对几个代表性对象检测模型的评估表明,即使是单个位翻转也可能导致严重的无声数据腐败事件,具有潜在的关键安全性,例如,(大于)生成的100 fps或最多可产生。 90%的真实阳性(TPS)在图像中丢失。此外,在单个卡住的情况下,可能会影响整个图像序列,从而导致暂时持续的幽灵检测,这些检测可能被误认为是实际对象(覆盖了大约83%的图像)。此外,场景中的实际物体被持续遗漏(最多约有64%的TPS)。我们的工作建立了对此类关键工作负载与硬件故障的安全相关脆弱性的详细理解。
translated by 谷歌翻译
采用基于AI的安全/关键任务应用程序的伟大寻求促使人们对评估应用W.R.T.鲁棒性的方法的兴趣。不仅其训练/调整,而且还由于故障,尤其是软错误而导致的错误,从而影响了基础硬件。存在两种策略:体系结构级故障注入和应用级功能误差模拟。我们提出了一个通过错误模拟引擎对卷积神经网络(CNN)的可靠性分析的框架,该引擎利用了从详细的故障注入活动中提取的一组验证的错误模型。这些错误模型是根据由故障引起的CNN操作员输出的损坏模式定义的,并弥合了故障注入和误差模拟之间的差距,从而利用了两种方法的优势。我们将我们的方法与SASSIFI进行了比较,以进行功能误差模拟W.R.T.的准确性。故障注射,并针对tensorfi进行误差模拟策略的速度。实验结果表明,我们的方法可达到断层效应的99 \%精度W.R.T. SASSIFI,速度从44倍到63x W.R.T. Tensorfi,仅实现有限的误差模型。
translated by 谷歌翻译
深神经网络(DNNS)在各种机器学习(ML)应用程序中取得了巨大成功,在计算机视觉,自然语言处理和虚拟现实等中提供了高质量的推理解决方案。但是,基于DNN的ML应用程序也带来计算和存储要求的增加了很多,对于具有有限的计算/存储资源,紧张的功率预算和较小形式的嵌入式系统而言,这尤其具有挑战性。挑战还来自各种特定应用的要求,包括实时响应,高通量性能和可靠的推理准确性。为了应对这些挑战,我们介绍了一系列有效的设计方法,包括有效的ML模型设计,定制的硬件加速器设计以及硬件/软件共同设计策略,以启用嵌入式系统上有效的ML应用程序。
translated by 谷歌翻译
基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
近年来,卷积神经网络(CNN)证明了它们在许多领域解决问题的能力,并且以前无法进行准确性。但是,这带有广泛的计算要求,这使得普通CPU无法提供所需的实时性能。同时,FPGA对加速CNN推断的兴趣激增。这是由于他们有能力创建具有不同级别的并行性的自定义设计。此外,与GPU相比,FPGA提供每瓦的性能更好。基于FPGA的CNN加速器的当前趋势是实现多个卷积层处理器(CLP),每个处理器都针对一层层量身定制。但是,CNN体系结构的日益增长的复杂性使得优化目标FPGA设备上可用的资源,以使最佳性能更具挑战性。在本文中,我们提出了CNN加速器和随附的自动设计方法,该方法采用元启发式学来分区可用的FPGA资源来设计多CLP加速器。具体而言,提出的设计工具采用模拟退火(SA)和禁忌搜索(TS)算法来查找所需的CLP数量及其各自的配置,以在给定的目标FPGA设备上实现最佳性能。在这里,重点是关键规格和硬件资源,包括数字信号处理器,阻止RAM和芯片内存储器带宽。提出了使用四个众所周知的基准CNN的实验结果和比较,表明所提出的加速框架既令人鼓舞又有前途。基于SA-/TS的多CLP比在加速Alexnet,Squeezenet 1.1,VGGNET和Googlenet架构上的最新单个/多CLP方法高1.31x-2.37倍高2.37倍。和VC709 FPGA板。
translated by 谷歌翻译
深神经网络(DNNS)的研究重点是提高现实部署的性能和准确性,导致新模型,例如尖峰神经网络(SNNS)以及优化技术,例如压缩网络的量化和修剪。但是,这些创新模型和优化技术的部署引入了可能的可靠性问题,这是DNNS在安全至关重要应用中广泛使用的支柱,例如自主驾驶。此外,缩放技术节点具有同时发生多个故障的相关风险,在最新的弹性分析中未解决。为了对DNN的更好可靠性分析,我们提出了Enpheeph,这是用于尖峰和压缩DNN的断层注入框架。 Enpheeph框架可以在专用硬件设备(例如GPU)上进行优化的执行,同时提供完整的自定义性来研究不同的故障模型,从而模拟各种可靠性约束和用例。因此,这些故障可以在SNN上执行,以及对基础代码进行最小化修改的压缩网络,这一壮举是其他最先进的工具无法实现的。为了评估我们的Enpheeph框架,我们通过不同的压缩技术分析了不同DNN和SNN模型的弹性。通过注射随机和增加的故障,我们表明DNN可以显示出每个参数的断层率低至7 x 10 ^(-7)故障的准确性降低,精度下降高于40%。当执行ENPHEEPH时,运行时间开销不到基线执行时间的20%,同时执行100 000个故障,至少比最新的框架低10倍,从而使Enpheeph Future-Proffure-Future-Profforn用于复杂的故障注入方案。我们在https://github.com/alexei95/enpheeph上发布Enpheeph。
translated by 谷歌翻译
今天,神经网络是几乎每个技术领域都有突破的基础。他们在加速器的应用最近导致这些系统的性能更好和效率。同时,需要解决由于最新(收缩)半导体技术导致的硬件故障增加。由于加速器系统通常用于背对自动驾驶汽车或医学诊断应用的时间关键应用,因此必须消除这些硬件故障。我们的研究从系统的角度评估了这些失败。根据我们的结果,我们为系统可靠性增强找到了关键结果,我们进一步提出了一种有效的方法,以避免使用最小硬件开销的这些故障。
translated by 谷歌翻译
我们提出了HashTAG,这是一种在检测性能上具有可证实范围的深度神经网络(DNN)对故障注射攻击的高精度检测的第一个框架。故障注射攻击中最近的文献显示了尺寸翻转引起的严重DNN精度劣化。在这种情况下,攻击者通过篡改程序的DRAM存储器来在DNN执行期间改变几个权重位。要检测运行时位翻转,HashTag在部署之前从良性DNN中提取唯一签名。签名后来用于验证DNN的完整性,并验证推动输出在速度。我们提出了一种新颖的敏感性分析方案,可准确地将最脆弱的DNN层识别到故障注射攻击。然后通过使用低碰撞散列函数对易受攻击层中的基础重量进行编码来构建DNN签名。部署DNN时,在推理期间从目标层提取新的哈希,并与地面真相签名进行比较。 HASHTAG采用了一种轻量级方法,可确保嵌入式平台上的低开销和实时故障检测。对各种DNN的最先进的位翻转攻击的广泛评估在攻击检测和执行开销方面,展示了HashTAG的竞争优势。
translated by 谷歌翻译
普遍的对策扰动是图像不可思议的和模型 - 无关的噪声,当添加到任何图像时可以误导训练的深卷积神经网络进入错误的预测。由于这些普遍的对抗性扰动可以严重危害实践深度学习应用的安全性和完整性,因此现有技术使用额外的神经网络来检测输入图像源的这些噪声的存在。在本文中,我们展示了一种攻击策略,即通过流氓手段激活(例如,恶意软件,木马)可以通过增强AI硬件加速器级的对抗噪声来绕过这些现有对策。我们使用Conv2D功能软件内核的共同仿真和FuseSoC环境下的硬件的Verilog RTL模型的共同仿真,展示了关于几个深度学习模型的加速度普遍对抗噪声。
translated by 谷歌翻译
利用稀疏性是加速在移动设备上的量化卷积神经网络(CNN)推断的关键技术。现有稀疏的CNN加速器主要利用无结构性稀疏性并实现显着的加速。然而,由于无界,很大程度上不可预测的稀疏模式,利用非结构化稀疏性需要复杂的硬件设计,具有显着的能量和面积开销,这对能量和区域效率至关重要的移动/ IOT推理场景特别有害。我们建议利用结构化的稀疏性,更具体地,更密集地绑定块(DBB)稀疏性,用于重量和激活。 DBB块张于每个块的最大非零数。因此,DBB暴露静态可预测的稀疏模式,使瘦稀疏性利用硬件能够。我们提出了新的硬件基元,以分别为(静态)权重和(动态)激活的DBB稀疏性,具有非常低的开销。建立在基元的顶部,我们描述了一种基于收缩阵列的CNN加速器的S2TA,可利用联合重量和激活DBB稀疏性和传统的收缩系统阵列上不可用的数据重用的新维度。与具有零值时钟门控的完全阵列的强基线相比,16NM中的S2TA达到超过2倍的加速和能量减少,超过五个流行的CNN基准。与近期的非收缩稀疏加速器相比,Eyeriss V2(65nm)和Sparten(45nm),S2TA在65nm中使用约2.2倍和3.1倍的每次推断的能量较少。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
部署在内存中的模拟处理(PIM)架构的DNN受到制造 - 时间可变性。我们开发了一种新的联合变化和量化感知DNN训练算法,用于高度量化的基于PIM的模型,该模型明显更有效。它在多台计算机视觉数据集/型号上表现出可变性的令人沮丧和训练后的量化模型。对于低位宽度和高变化,Resnet-18在最佳替代方案上的增益高达35.7%。我们证明,在可变性的芯片组件的逼真模式下,单独培训无法防止大型DNN精度损失(CIFAR-100 / Resnet-18上的高达54%)。我们介绍了一种自调整DNN架构,可在推理期间动态调整层面激活,并有效地降低精度损耗至低于10%。
translated by 谷歌翻译
在当今智能网络物理系统时代,由于它们在复杂的现实世界应用中的最新性能,深度神经网络(DNN)已无处不在。这些网络的高计算复杂性转化为增加的能源消耗,这是在资源受限系统中部署大型DNN的首要障碍。通过培训后量化实现的定点(FP)实现通常用于减少这些网络的能源消耗。但是,FP中的均匀量化间隔将数据结构的位宽度限制为大值,因为需要以足够的分辨率来表示大多数数字并避免较高的量化误差。在本文中,我们利用了关键见解,即(在大多数情况下)DNN的权重和激活主要集中在零接近零,只有少数几个具有较大的幅度。我们提出了Conlocnn,该框架是通过利用来实现节能低精度深度卷积神经网络推断的框架:(1)重量的不均匀量化,以简化复杂的乘法操作的简化; (2)激活值之间的相关性,可以在低成本的情况下以低成本进行部分补偿,而无需任何运行时开销。为了显着从不均匀的量化中受益,我们还提出了一种新颖的数据表示格式,编码低精度二进制签名数字,以压缩重量的位宽度,同时确保直接使用编码的权重来使用新颖的多重和处理 - 积累(MAC)单元设计。
translated by 谷歌翻译
Graph neural networks (GNNs) have recently emerged as a promising learning paradigm in learning graph-structured data and have demonstrated wide success across various domains such as recommendation systems, social networks, and electronic design automation (EDA). Like other deep learning (DL) methods, GNNs are being deployed in sophisticated modern hardware systems, as well as dedicated accelerators. However, despite the popularity of GNNs and the recent efforts of bringing GNNs to hardware, the fault tolerance and resilience of GNNs has generally been overlooked. Inspired by the inherent algorithmic resilience of DL methods, this paper conducts, for the first time, a large-scale and empirical study of GNN resilience, aiming to understand the relationship between hardware faults and GNN accuracy. By developing a customized fault injection tool on top of PyTorch, we perform extensive fault injection experiments to various GNN models and application datasets. We observe that the error resilience of GNN models varies by orders of magnitude with respect to different models and application datasets. Further, we explore a low-cost error mitigation mechanism for GNN to enhance its resilience. This GNN resilience study aims to open up new directions and opportunities for future GNN accelerator design and architectural optimization.
translated by 谷歌翻译
量化是一种降低DNN模型的计算和记忆成本的技术,DNN模型越来越大。现有的量化解决方案使用固定点整数或浮点类类型,这些量子的好处有限,因为两者都需要更多位以保持原始型号的准确性。另一方面,可变长度量化使用低位量化对正常值和高精度的分数对异常值的一部分。即使这项工作带来了算法的好处,但由于长度的编码和解码,它也引入了重要的硬件开销。在这项工作中,我们提出了一种称为ANT的固定长度自适应数值数据类型,以通过微小的硬件开销实现低位量化。我们的数据类型ANT利用了两项关键创新来利用DNN模型中的张贴内和调整的自适应机会。首先,我们提出了一种特定的数据类型Flint,该数据类型结合了Float和INT的优势,以适应张量中不同值的重要性。其次,我们提出了一个自适应框架,该框架根据其分布特性选择每个张量的最佳类型。我们为蚂蚁设计了统一的处理元件体系结构,并显示其与现有DNN加速器的易于集成。我们的设计导致2.8 $ \ times $速度和2.5 $ \ times $ $ $ $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $比最先进的量化加速器提高了能源效率。
translated by 谷歌翻译
机器学习的进步为低端互联网节点(例如微控制器)带来了新的机会,将情报带入了情报。传统的机器学习部署具有较高的记忆力,并计算足迹阻碍了其在超资源约束的微控制器上的直接部署。本文强调了为MicroController类设备启用机载机器学习的独特要求。研究人员为资源有限的应用程序使用专门的模型开发工作流程,以确保计算和延迟预算在设备限制之内,同时仍保持所需的性能。我们表征了微控制器类设备的机器学习模型开发的广泛适用的闭环工作流程,并表明几类应用程序采用了它的特定实例。我们通过展示多种用例,将定性和数值见解介绍到模型开发的不同阶段。最后,我们确定了开放的研究挑战和未解决的问题,要求仔细考虑前进。
translated by 谷歌翻译
混合精确的深神经网络达到了硬件部署所需的能源效率和吞吐量,尤其是在资源有限的情况下,而无需牺牲准确性。但是,不容易找到保留精度的最佳每层钻头精度,尤其是在创建巨大搜索空间的大量模型,数据集和量化技术中。为了解决这一困难,最近出现了一系列文献,并且已经提出了一些实现有希望的准确性结果的框架。在本文中,我们首先总结了文献中通常使用的量化技术。然后,我们对混合精液框架进行了彻底的调查,该调查是根据其优化技术进行分类的,例如增强学习和量化技术,例如确定性舍入。此外,讨论了每个框架的优势和缺点,我们在其中呈现并列。我们最终为未来的混合精液框架提供了指南。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译