我们介绍了一些源自摄影师的本地化数据集,他们实际上试图了解他们拍摄的图像中的视觉内容。它包括有4,500多个视觉障碍者拍摄的超过4,500张图像中的100个类别的近10,000个细分。与现有的少数弹射对象检测和实例分段数据集相比,我们的数据集是第一个在对象中找到孔(例如,在我们的分段的12.3 \%中找到),它显示的对象相对于占据相对于尺寸的范围较大。图像和文本在我们的对象中的常见五倍以上(例如,在我们的分割的22.4%中找到)。对三种现代少量定位算法的分析表明,它们概括为我们的新数据集。这些算法通常很难找到带有孔,非常小且非常大的物体以及缺乏文本的物体的对象。为了鼓励更大的社区致力于这些尚未解决的挑战,我们在https://vizwiz.org上公开分享了带注释的少数数据集。
translated by 谷歌翻译
We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
translated by 谷歌翻译
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the chal-
translated by 谷歌翻译
Progress on object detection is enabled by datasets that focus the research community's attention on open challenges. This process led us from simple images to complex scenes and from bounding boxes to segmentation masks. In this work, we introduce LVIS (pronounced 'el-vis'): a new dataset for Large Vocabulary Instance Segmentation. We plan to collect ∼2 million high-quality instance segmentation masks for over 1000 entry-level object categories in 164k images. Due to the Zipfian distribution of categories in natural images, LVIS naturally has a long tail of categories with few training samples. Given that state-of-the-art deep learning methods for object detection perform poorly in the low-sample regime, we believe that our dataset poses an important and exciting new scientific challenge. LVIS is available at http://www.lvisdataset.org.
translated by 谷歌翻译
我们介绍了遮阳板,一个新的像素注释的新数据集和一个基准套件,用于在以自我为中心的视频中分割手和活动对象。遮阳板注释Epic-kitchens的视频,其中带有当前视频分割数据集中未遇到的新挑战。具体而言,我们需要确保像素级注释作为对象经历变革性相互作用的短期和长期一致性,例如洋葱被剥皮,切成丁和煮熟 - 我们旨在获得果皮,洋葱块,斩波板,刀,锅以及表演手的准确像素级注释。遮阳板引入了一条注释管道,以零件为ai驱动,以进行可伸缩性和质量。总共,我们公开发布257个对象类的272K手册语义面具,990万个插值密集口罩,67K手动关系,涵盖36小时的179个未修剪视频。除了注释外,我们还引入了视频对象细分,互动理解和长期推理方面的三个挑战。有关数据,代码和排行榜:http://epic-kitchens.github.io/visor
translated by 谷歌翻译
Semantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. Totally there are 25k images of the complex everyday scenes containing a variety of objects in their natural spatial context. On average there are 19.5 instances and 10.5 object classes per image. Based on ADE20K, we construct benchmarks for scene parsing and instance segmentation. We provide baseline performances on both of the benchmarks and re-implement the state-ofthe-art models for open source. We further evaluate the effect of synchronized batch normalization and find that a reasonably large batch size is crucial for the semantic segmentation performance. We show that the networks trained on ADE20K are able to segment a wide variety of scenes and objects 1 .
translated by 谷歌翻译
Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in
translated by 谷歌翻译
本文推动了在图像中分解伪装区域的信封,成了有意义的组件,即伪装的实例。为了促进伪装实例分割的新任务,我们将在数量和多样性方面引入DataSet被称为Camo ++,该数据集被称为Camo ++。新数据集基本上增加了具有分层像素 - 明智的地面真理的图像的数量。我们还为伪装实例分割任务提供了一个基准套件。特别是,我们在各种场景中对新构造的凸轮++数据集进行了广泛的评估。我们还提出了一种伪装融合学习(CFL)伪装实例分割框架,以进一步提高最先进的方法的性能。数据集,模型,评估套件和基准测试将在我们的项目页面上公开提供:https://sites.google.com/view/ltnghia/research/camo_plus_plus
translated by 谷歌翻译
引入广义的少量拍摄语义分割以超越仅在新颖的类上评估几次分段模型,以包括测试他们记住基础类的能力。虽然目前所有方法都是基于Meta-Learning,但在观察只有几张镜头后,他们在学习中表现得差,并且在学习中达到差。我们提出了第一种微调解决方案,并证明它在两个数据集上实现最先进的结果时讨论了饱和度问题,Pascal-$ 5 ^ I $和Coco-$ 20 ^ i $。我们还表明它优于现有方法是否微调多个最终层或仅最终层。最后,我们提出了一个三重损失正常化,展示了如何重新分配新颖和基本类别之间的性能平衡,以便它们之间存在较小的差距。
translated by 谷歌翻译
The PASCAL Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection.This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.
translated by 谷歌翻译
Massive data corpora like WebText, Wikipedia, Conceptual Captions, WebImageText, and LAION have propelled recent dramatic progress in AI. Large neural models trained on such datasets produce impressive results and top many of today's benchmarks. A notable omission within this family of large-scale datasets is 3D data. Despite considerable interest and potential applications in 3D vision, datasets of high-fidelity 3D models continue to be mid-sized with limited diversity of object categories. Addressing this gap, we present Objaverse 1.0, a large dataset of objects with 800K+ (and growing) 3D models with descriptive captions, tags, and animations. Objaverse improves upon present day 3D repositories in terms of scale, number of categories, and in the visual diversity of instances within a category. We demonstrate the large potential of Objaverse via four diverse applications: training generative 3D models, improving tail category segmentation on the LVIS benchmark, training open-vocabulary object-navigation models for Embodied AI, and creating a new benchmark for robustness analysis of vision models. Objaverse can open new directions for research and enable new applications across the field of AI.
translated by 谷歌翻译
TU Dresden www.cityscapes-dataset.net train/val -fine annotation -3475 images train -coarse annotation -20 000 images test -fine annotation -1525 images
translated by 谷歌翻译
弱监督的对象本地化(WSOL)旨在学习仅使用图像级类别标签编码对象位置的表示形式。但是,许多物体可以在不同水平的粒度标记。它是动物,鸟还是大角的猫头鹰?我们应该使用哪些图像级标签?在本文中,我们研究了标签粒度在WSOL中的作用。为了促进这项调查,我们引入了Inatloc500,这是一个新的用于WSOL的大规模细粒基准数据集。令人惊讶的是,我们发现选择正确的训练标签粒度比选择最佳的WSOL算法提供了更大的性能。我们还表明,更改标签粒度可以显着提高数据效率。
translated by 谷歌翻译
全球城市可免费获得大量的地理参考全景图像,以及各种各样的城市物体上的位置和元数据的详细地图。它们提供了有关城市物体的潜在信息来源,但是对象检测的手动注释是昂贵,费力和困难的。我们可以利用这种多媒体来源自动注释街道级图像作为手动标签的廉价替代品吗?使用Panorams框架,我们引入了一种方法,以根据城市上下文信息自动生成全景图像的边界框注释。遵循这种方法,我们仅以快速自动的方式从开放数据源中获得了大规模的(尽管嘈杂,但都嘈杂,但对城市数据集进行了注释。该数据集涵盖了阿姆斯特丹市,其中包括771,299张全景图像中22个对象类别的1400万个嘈杂的边界框注释。对于许多对象,可以从地理空间元数据(例如建筑价值,功能和平均表面积)获得进一步的细粒度信息。这样的信息将很难(即使不是不可能)单独根据图像来获取。为了进行详细评估,我们引入了一个有效的众包协议,用于在全景图像中进行边界框注释,我们将其部署以获取147,075个地面真实对象注释,用于7,348张图像的子集,Panorams-clean数据集。对于我们的Panorams-Noisy数据集,我们对噪声以及不同类型的噪声如何影响图像分类和对象检测性能提供了广泛的分析。我们可以公开提供数据集,全景噪声和全景清洁,基准和工具。
translated by 谷歌翻译
The Flickr30k dataset has become a standard benchmark for sentence-based image description. This paper presents Flickr30k Entities, which augments the 158k captions from Flickr30k with 244k coreference chains, linking mentions of the same entities across different captions for the same image, and associating them with 276k manually annotated bounding boxes. Such annotations are essential for continued progress in automatic image description and grounded language understanding. They enable us to define a new benchmark for localization of textual entity mentions in an image. We present a strong baseline for this task that combines an image-text embedding, detectors for common objects, a color classifier, and a bias towards selecting larger objects. While our baseline rivals in accuracy more complex state-of-the-art models, we show that its gains cannot be easily parlayed into improvements on such tasks as image-sentence retrieval, thus underlining the limitations of current methods and the need for further research.
translated by 谷歌翻译
对人类对象相互作用的理解在第一人称愿景(FPV)中至关重要。遵循相机佩戴者操纵的对象的视觉跟踪算法可以提供有效的信息,以有效地建模此类相互作用。在过去的几年中,计算机视觉社区已大大提高了各种目标对象和场景的跟踪算法的性能。尽管以前有几次尝试在FPV域中利用跟踪器,但仍缺少对最先进跟踪器的性能的有条理分析。这项研究差距提出了一个问题,即应使用当前的解决方案``现成''还是应进行更多特定领域的研究。本文旨在为此类问题提供答案。我们介绍了FPV中单个对象跟踪的首次系统研究。我们的研究广泛分析了42个算法的性能,包括通用对象跟踪器和基线FPV特定跟踪器。分析是通过关注FPV设置的不同方面,引入新的绩效指标以及与FPV特定任务有关的。这项研究是通过引入Trek-150(由150个密集注释的视频序列组成的新型基准数据集)来实现的。我们的结果表明,FPV中的对象跟踪对当前的视觉跟踪器构成了新的挑战。我们强调了导致这种行为的因素,并指出了可能的研究方向。尽管遇到了困难,但我们证明了跟踪器为需要短期对象跟踪的FPV下游任务带来好处。我们预计,随着新的和FPV特定的方法学会得到研究,通用对象跟踪将在FPV中受欢迎。
translated by 谷歌翻译
为了使AI安全地在医院,学校和工作场所等现实世界中安全部署,它必须能够坚定地理解物理世界。这种推理的基础是物理常识:了解可用对象的物理特性和提供的能力,如何被操纵以及它们如何与其他对象进行交互。物理常识性推理从根本上是一项多感官任务,因为物理特性是通过多种模式表现出来的,其中两个是视觉和声学。我们的论文通过贡献PACS来朝着现实世界中的物理常识推理:第一个用于物理常识属性注释的视听基准。 PACS包含13,400对答案对,涉及1,377个独特的物理常识性问题和1,526个视频。我们的数据集提供了新的机会来通过将音频作为此多模式问题的核心组成部分来推进物理推理的研究领域。使用PACS,我们在我们的新挑战性任务上评估了多种最先进的模型。尽管某些模型显示出令人鼓舞的结果(精度为70%),但它们都没有人类的绩效(精度为95%)。我们通过证明多模式推理的重要性并为未来的研究提供了可能的途径来结束本文。
translated by 谷歌翻译
将简单的体系结构与大规模预训练相结合已导致图像分类的大量改进。对于对象检测,预训练和缩放方法的确定性不佳,尤其是在长尾和开放式摄影的环境中,训练数据相对较少。在本文中,我们提出了一个强大的配方,用于将图像文本模型转移到开放式对象检测中。我们使用具有最小修改,对比度文本预训练和端到端检测微调的标准视觉变压器体系结构。我们对该设置的缩放属性的分析表明,增加图像级预训练和模型大小在下游检测任务上产生一致的改进。我们提供适应性策略和正规化,以实现零击文本条件和单次图像条件对象检测的非常强劲的性能。代码和型号可在GitHub上找到。
translated by 谷歌翻译
Existing image classification datasets used in computer vision tend to have a uniform distribution of images across object categories. In contrast, the natural world is heavily imbalanced, as some species are more abundant and easier to photograph than others. To encourage further progress in challenging real world conditions we present the iNaturalist species classification and detection dataset, consisting of 859,000 images from over 5,000 different species of plants and animals. It features visually similar species, captured in a wide variety of situations, from all over the world. Images were collected with different camera types, have varying image quality, feature a large class imbalance, and have been verified by multiple citizen scientists. We discuss the collection of the dataset and present extensive baseline experiments using state-of-the-art computer vision classification and detection models. Results show that current nonensemble based methods achieve only 67% top one classification accuracy, illustrating the difficulty of the dataset. Specifically, we observe poor results for classes with small numbers of training examples suggesting more attention is needed in low-shot learning.
translated by 谷歌翻译
成对图像和文本的大型数据集越来越受到愿景和愿景和语言任务的通用表示。此类数据集已通过查询搜索引擎或收集HTML Alt-Text构建 - 由于Web数据是嘈杂的,因此它们需要复杂的过滤管道来维护质量。我们探索备用数据源以收集具有最小滤波的高质量数据。我们介绍Redcaps - 从Reddit收集的12M图像文本对的大规模数据集。来自Reddit的图像和标题描绘并描述了各种各样的物体和场景。我们从手动策划的FuSoddits集中收集数据,这为粗略图像标签提供给粗略图像标签,并允许我们转向数据集组合而不标记单个实例。我们展示Redcaps培训的标题模型产生了人类优选的丰富和各种标题,并学习转移到许多下游任务的视觉表现。
translated by 谷歌翻译