Applications of force control and motion planning often rely on an inverse dynamics model to represent the high-dimensional dynamic behavior of robots during motion. The widespread occurrence of low-velocity, small-scale, locally isotropic motion (LIMO) typically complicates the identification of appropriate models due to the exaggeration of dynamic effects and sensory perturbation caused by complex friction and phenomena of hysteresis, e.g., pertaining to joint elasticity. We propose a hybrid model learning base architecture combining a rigid body dynamics model identified by parametric regression and time-series neural network architectures based on multilayer-perceptron, LSTM, and Transformer topologies. Further, we introduce novel joint-wise rotational history encoding, reinforcing temporal information to effectively model dynamic hysteresis. The models are evaluated on a KUKA iiwa 14 during algorithmically generated locally isotropic movements. Together with the rotational encoding, the proposed architectures outperform state-of-the-art baselines by a magnitude of 10$^3$ yielding an RMSE of 0.14 Nm. Leveraging the hybrid structure and time-series encoding capabilities, our approach allows for accurate torque estimation, indicating its applicability in critically force-sensitive applications during motion sequences exceeding the capacity of conventional inverse dynamics models while retaining trainability in face of scarce data and explainability due to the employed physics model prior.
translated by 谷歌翻译
机器人社区在为软机器人设备建模提供的理论工具的复杂程度中看到了指数增长。已经提出了不同的解决方案以克服与软机器人建模相关的困难,通常利用其他科学学科,例如连续式机械和计算机图形。这些理论基础通常被认为是理所当然的,这导致复杂的文献,因此,从未得到完整审查的主题。Withing这种情况下,提交的文件的目标是双重的。突出显示涉及建模技术的不同系列的常见理论根源,采用统一语言,以简化其主要连接和差异的分析。因此,对上市接近自然如下,并最终提供在该领域的主要作品的完整,解开,审查。
translated by 谷歌翻译
准确地建模四极管的系统动力学对于保证敏捷,安全和稳定的导航至关重要。该模型需要在多个飞行机制和操作条件下捕获系统行为,包括产生高度非线性效应的那些,例如空气动力和扭矩,转子相互作用或可能的系统配置修改。经典方法依靠手工制作的模型并努力概括和扩展以捕获这些效果。在本文中,我们介绍了一种新型的物理启发的时间卷积网络(PI-TCN)方法,用于学习四极管的系统动力学,纯粹是从机器人体验中学习的。我们的方法结合了稀疏时间卷积的表达力和密集的进料连接,以进行准确的系统预测。此外,物理限制嵌入了培训过程中,以促进网络对培训分布以外数据的概括功能。最后,我们设计了一种模型预测控制方法,该方法结合了学习的动力学,以完全利用学习范围的方式,以完全利用学习模型预测的准确闭环轨迹跟踪。实验结果表明,我们的方法可以准确地从数据中提取四四光动力学的结构,从而捕获对经典方法隐藏的效果。据我们所知,这是物理启发的深度学习成功地应用于时间卷积网络和系统识别任务,同时同时实现了预测性控制。
translated by 谷歌翻译
对于较高的自由度机器人,质量基质,科里奥利和离心力和重力矩阵在计算上很重,需要长时间执行。由于程序的顺序结构,多层处理器无法提高性能。需要高处理能力来维持更高的采样率。基于神经网络的控制是开发顺序模型的平行等效模型的绝佳方法。在本文中,基于深度学习算法的控制器设计为7度的自由外骨骼机器人。总共49个密集连接的神经元分为四层,以估计跟踪轨迹的关节扭矩要求。为了培训,提出了基于深度神经网络分析模型的数据生成技术。添加了PD控制器来处理预测错误。由于深度学习网络具有并行结构,因此使用多核CPU/GPU可以显着提高控制器的性能。仿真结果显示出非常高的轨迹跟踪精度。
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
在人类机器人的相互作用中,眼球运动在非语言交流中起着重要作用。但是,控制机器人眼的动作表现出与人眼动物系统相似的性能仍然是一个重大挑战。在本文中,我们研究了如何使用电缆驱动的驱动系统来控制人眼的现实模型,该系统模仿了六个眼外肌肉的自由度。仿生设计引入了解决新的挑战,最值得注意的是,需要控制每种肌肉的支撑,以防止运动过程中的紧张感损失,这将导致电缆松弛和缺乏控制。我们构建了一个机器人原型,并开发了一个非线性模拟器和两个控制器。在第一种方法中,我们使用局部衍生技术线性化了非线性模型,并设计了线性 - 季度最佳控制器,以优化计算准确性,能量消耗和运动持续时间的成本函数。第二种方法使用复发性神经网络,该神经网络从系统的样本轨迹中学习非线性系统动力学,以及一个非线性轨迹优化求解器,可最大程度地减少相似的成本函数。我们专注于具有完全不受限制的运动学的快速saccadic眼球运动,以及六根电缆的控制信号的生成,这些电缆同时满足了几个动态优化标准。该模型忠实地模仿了人类扫视观察到的三维旋转运动学和动力学。我们的实验结果表明,尽管两种方法都产生了相似的结果,但非线性方法对于未来改进该模型的方法更加灵活,该模型的计算是线性化模型的位置依赖性偏向和局部衍生物的计算变得特别乏味。
translated by 谷歌翻译
空中操纵器(AM)表现出特别具有挑战性的非线性动力学;无人机和操纵器携带的是一个紧密耦合的动态系统,相互影响。描述这些动力学的数学模型构成了非线性控制和深度强化学习中许多解决方案的核心。传统上,动力学的配方涉及在拉格朗日框架中的欧拉角参数化或牛顿 - 欧拉框架中的四元素参数化。前者的缺点是诞生奇异性,而后者在算法上是复杂的。这项工作提出了一个混合解决方案,结合了两者的好处,即利用拉格朗日框架的四元化方法,将无奇异参数化与拉格朗日方法的算法简单性联系起来。我们通过提供有关运动学建模过程的详细见解以及一般空中操纵器动力学的表述。获得的动力学模型对实时物理引擎进行了实验验证。获得的动力学模型的实际应用显示在计算的扭矩反馈控制器(反馈线性化)的上下文中,我们通过日益复杂的模型分析其实时功能。
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
如果机器人曾经实现与动物所展示的机器人相当的自动运动,则它们必须获得在损害,故障或环境条件下快速恢复运动行为的能力,从而损害了其有效移动的能力。我们提出了一种方法,该方法使我们的机器人和模拟机器人能够在几十次尝试中恢复自由运动行为的高度。我们的方法采用行为规范,以等级的差异约束来表达所需的行为。我们展示了如何通过编码模板来考虑这些约束,从而产生了将先前优化的行为推广到新情况下以快速学习的形式概括的秘诀。我们进一步说明,在数据驱动的上下文中,足够的限制通常很容易确定。作为例证,我们证明了我们在物理7 DOF六型六杆元机器人上的恢复方法,以及对6 DOF 2D运动机制的模拟。在这两种情况下,我们恢复了与先前优化的运动在功能上无法区分的行为。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
我们描述了更改 - 联系机器人操作任务的框架,要求机器人与对象和表面打破触点。这种任务的不连续交互动态使得难以构建和使用单个动力学模型或控制策略,并且接触变化期间动态的高度非线性性质可能对机器人和物体造成损害。我们提出了一种自适应控制框架,使机器人能够逐步学习以预测更改联系人任务中的接触变化,从而了解了碎片连续系统的交互动态,并使用任务空间可变阻抗控制器提供平滑且精确的轨迹跟踪。我们通过实验比较我们框架的表现,以确定所需的代表性控制方法,以确定我们框架的自适应控制和增量学习组件需要在变化 - 联系机器人操纵任务中存在不连续动态的平稳控制。
translated by 谷歌翻译
动态运动是机器人武器的关键特征,使他们能够快速有效地执行任务。在任务空间运行时,软连续式操纵器目前尚未考虑动态参数。这种缺点使现有的软机器人缓慢并限制了他们处理外力的能力,特别是在物体操纵期间。我们通过使用动态操作空间控制来解决此问题。我们的控制方法考虑了3D连续体臂的动态参数,并引入了新模型,使多段软机械师能够在任务空间中顺利运行。先前仅为刚性机器人提供的先进控制方法现在适用于软机器;例如,潜在的场避免以前仅针对刚性机器人显示,现在延伸到软机器人。使用我们的方法,柔软的机械手现在可以实现以前不可能的各种任务:我们评估机械手在闭环控制实验中的性能,如拾取和障碍物避免,使用附加的软夹具抛出物体,并通过用掌握的粉笔绘制来故意将力施加到表面上。除了新的技能之外,我们的方法还提高了59%的跟踪精度,并将速度提高到19.3的尺寸,与最新的任务空间控制相比。通过这些新发现能力,软机器人可以开始挑战操纵领域的刚性机器人。我们固有的安全和柔顺的软机器人将未来的机器人操纵到一个不用的设置,其中人和机器人并行工作。
translated by 谷歌翻译
灵活的联合机械手经常用于人机协作和共享工作区任务的增强安全性。然而,关节灵活性显着降低了运动的准确性,特别是在高速度和廉价的致动器中。在本文中,我们提出了一种基于学习的方法来识别柔性联合机械手的未知动态,并改善高速下的轨迹跟踪。我们提出了一种两级模型,由一步向前动态预测器和逆动力学估计器组成。第二部分基于线性时间不变动态运算符,以近似前馈接头位置和速度命令。我们在真实数据上培训模型结束,并在Baxter Robot上评估它。我们的实验表明,通过一步的未来状态预测增强输入可以提高性能,而不是在没有预测的情况下相同的模型。我们比较关节位置,接合速度和终端效应器位置跟踪精度,对经典基线控制器和几种更简单的型号。
translated by 谷歌翻译
物理运动模型为车辆运动提供了可解释的预测。但是,某些模型参数(例如与空气动力学和流体动力学相关的参数)非常昂贵,并且通常仅大致近似降低预测准确性。经常性的神经网络以低成本的价格实现了高预测准确性,因为它们可以使用车辆常规操作期间收集的廉价测量值,但是它们的结果很难解释。为了精确预测车辆状态,没有昂贵的物理参数测量,我们提出了一种混合方法,结合了深度学习和物理运动模型,包括新型的两阶段训练程序。我们通过将深神经网络的输出范围限制为混合模型的一部分来实现可解释性,这将神经网络引入的不确定性限制为已知数量。我们已经评估了船用和四轮运动的用例。结果表明,与现有的深度学习方法相比,我们的混合模型可以提高模型的解释性,而准确性没有降低。
translated by 谷歌翻译
在本文中,我们为非稳定于3D流体结构交互系统提供了一种基于深度学习的阶数(DL-ROM)。所提出的DL-ROM具有非线性状态空间模型的格式,并采用具有长短期存储器(LSTM)的经常性神经网络。我们考虑一种以状态空间格式的可弹性安装的球体的规范流体结构系统,其具有不可压缩的流体流动。我们开发了一种非线性数据驱动的耦合,用于预测横向方向自由振动球的非定常力和涡旋诱导的振动(VIV)锁定。我们设计输入输出关系作为用于流体结构系统的低维逼近的力和位移数据集的时间序列。基于VIV锁定过程的先验知识,输入功能包含一系列频率和幅度,其能够实现高效的DL-ROM,而无需用于低维建模的大量训练数据集。一旦训练,网络就提供了输入 - 输出动态的非线性映射,其可以通过反馈过程预测较长地平线的耦合流体结构动态。通过将LSTM网络与Eigensystem实现算法(时代)集成,我们构造了用于减少阶稳定性分析的数据驱动状态空间模型。我们通过特征值选择过程调查VIV的潜在机制和稳定性特征。为了了解频率锁定机制,我们研究了针对降低振荡频率和质量比的范围的特征值轨迹。与全阶模拟一致,通过组合的LSTM-ERA程序精确捕获频率锁定分支。所提出的DL-ROM与涉及流体结构相互作用的物理学数字双胞胎的基于物理的数字双胞胎。
translated by 谷歌翻译
在机电一体化的IEEE / ASME交易上发布,DOI:10.1109 / TMECH.2021.3100150。理想情况下,需要精确的传感器测量来实现机电系统的闭环控制中的良好性能。因此,传感器故障将阻止系统正常工作,除非采用容错控制(FTC)架构。作为非线性系统的基于模型的FTC算法通常是具有挑战性的设计,本文基于深度学习的传感器故障存在于FTC的新方法。所考虑的方法用单个反复性神经网络替换故障检测和隔离和控制器设计的阶段,其在给定的时间窗口中具有过去的传感器测量值作为输入,以及控制变量的当前值作为输出。该端到端的深FTC方法应用于由球形倒立摆的机电调整系统,其构造通过反应轮改变,又通过电动机致动。模拟和实验结果表明,该方法可以处理连杆位置/速度传感器中发生的突然故障。提供的补充材料包括现实世界实验和软件源代码的视频。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
通常,地形几何形状是非平滑的,非线性的,非凸的,如果通过以机器人为中心的视觉单元感知,则似乎部分被遮住且嘈杂。这项工作介绍了能够实时处理上述问题的完整控制管道。我们制定了一个轨迹优化问题,该问题可以在基本姿势和立足点上共同优化,但要遵守高度图。为了避免收敛到不良的本地Optima,我们部署了逐步的优化技术。我们嵌入了一个紧凑的接触式自由稳定性标准,该标准与非平板地面公式兼容。直接搭配用作转录方法,导致一个非线性优化问题,可以在少于十毫秒内在线解决。为了在存在外部干扰的情况下增加鲁棒性,我们用动量观察者关闭跟踪环。我们的实验证明了爬楼梯,踏上垫脚石上的楼梯,并利用各种动态步态在缝隙上。
translated by 谷歌翻译