一种简单自然的增强学习算法(RL)是蒙特卡洛探索开始(MCES),通过平均蒙特卡洛回报来估算Q功能,并通过选择最大化Q当前估计的行动来改进策略。 -功能。探索是通过“探索开始”来执行的,即每个情节以随机选择的状态和动作开始,然后遵循当前的策略到终端状态。在Sutton&Barto(2018)的RL经典书中,据说建立MCES算法的收敛是RL中最重要的剩余理论问题之一。但是,MCE的收敛问题证明是非常细微的。 Bertsekas&Tsitsiklis(1996)提供了一个反例,表明MCES算法不一定会收敛。 TSITSIKLIS(2002)进一步表明,如果修改了原始MCES算法,以使Q-功能估计值以所有状态行动对以相同的速率更新,并且折现因子严格少于一个,则MCES算法收敛。在本文中,我们通过Sutton&Barto(1998)中给出的原始,更有效的MCES算法取得进展政策。这样的MDP包括大量的环境,例如所有确定性环境和所有具有时间步长的情节环境或作为状态的任何单调变化的值。与以前使用随机近似的证据不同,我们引入了一种新型的感应方法,该方法非常简单,仅利用大量的强规律。
translated by 谷歌翻译
在强化学习中,蒙特卡洛算法通过平均偶发回报来更新Q功能。在Monte Carlo UCB(MC-UCB)算法中,在每个状态下采取的动作是最大化Q函数加上UCB勘探项的动作,该术语偏向于选择频率较低的动作的选择。尽管在为MC-UCB建立遗憾界限方面已经进行了重要的工作,但大多数工作都集中在该问题的有限培训版本上,每个情节都在不断数量的步骤后终止。对于此类有限的Horizo​​n问题,最佳策略既取决于当前状态和情节中的时间。但是,对于许多自然的情节问题,例如GO,CHESS和机器人任务等游戏,该情节是随机的,最佳政策是静止的。对于此类环境,MC-UCB中的Q功能是否会收敛到最佳Q函数,这是一个空旷的问题。我们猜想,与Q学习不同,它并不是所有MDP的收敛。尽管如此,我们表明,对于大型MDP,其中包括二十一点和确定性MDP等随机MDP,例如GO,MC-UCB中的Q功能几乎可以肯定地收敛到最佳Q函数。该结果的直接推论是,它几乎肯定会为所有有限的Horizo​​n MDP收敛。我们还提供了数值实验,为MC-UCB提供了进一步的见解。
translated by 谷歌翻译
我们介绍了一种改进政策改进的方法,该方法在基于价值的强化学习(RL)的贪婪方法与基于模型的RL的典型计划方法之间进行了插值。新方法建立在几何视野模型(GHM,也称为伽马模型)的概念上,该模型对给定策略的折现状态验证分布进行了建模。我们表明,我们可以通过仔细的基本策略GHM的仔细组成,而无需任何其他学习,可以评估任何非马尔科夫策略,以固定的概率在一组基本马尔可夫策略之间切换。然后,我们可以将广义政策改进(GPI)应用于此类非马尔科夫政策的收集,以获得新的马尔可夫政策,通常将其表现优于其先驱。我们对这种方法提供了彻底的理论分析,开发了转移和标准RL的应用,并在经验上证明了其对标准GPI的有效性,对充满挑战的深度RL连续控制任务。我们还提供了GHM培训方法的分析,证明了关于先前提出的方法的新型收敛结果,并显示了如何在深度RL设置中稳定训练这些模型。
translated by 谷歌翻译
在线强化学习(RL)中的挑战之一是代理人需要促进对环境的探索和对样品的利用来优化其行为。无论我们是否优化遗憾,采样复杂性,状态空间覆盖范围或模型估计,我们都需要攻击不同的勘探开发权衡。在本文中,我们建议在分离方法组成的探索 - 剥削问题:1)“客观特定”算法(自适应)规定哪些样本以收集到哪些状态,似乎它可以访问a生成模型(即环境的模拟器); 2)负责尽可能快地生成规定样品的“客观无关的”样品收集勘探策略。建立最近在随机最短路径问题中进行探索的方法,我们首先提供一种算法,它给出了每个状态动作对所需的样本$ B(S,a)$的样本数量,需要$ \ tilde {o} (bd + d ^ {3/2} s ^ 2 a)收集$ b = \ sum_ {s,a} b(s,a)$所需样本的$时间步骤,以$ s $各国,$ a $行动和直径$ d $。然后我们展示了这种通用探索算法如何与“客观特定的”策略配对,这些策略规定了解决各种设置的样本要求 - 例如,模型估计,稀疏奖励发现,无需无成本勘探沟通MDP - 我们获得改进或新颖的样本复杂性保证。
translated by 谷歌翻译
我们研究了具有线性函数近似增强学习中的随机最短路径(SSP)问题,其中过渡内核表示为未知模型的线性混合物。我们将此类别的SSP问题称为线性混合物SSP。我们提出了一种具有Hoeffding-type置信度的新型算法,用于学习线性混合物SSP,可以获得$ \ tilde {\ Mathcal {o}}}}(d B _ {\ star}^{1.5} \ sqrt {k/c_ {k/c_ {k/c_ {k/c_ { \ min}})$遗憾。这里$ k $是情节的数量,$ d $是混合模型中功能映射的维度,$ b _ {\ star} $限制了最佳策略的预期累积成本,$ c _ {\ min}>> 0 $是成本函数的下限。当$ c _ {\ min} = 0 $和$ \ tilde {\ mathcal {o}}}(k^{2/3})$遗憾时,我们的算法也适用于情况。据我们所知,这是第一个具有sublrinear遗憾保证线性混合物SSP的算法。此外,我们设计了精致的伯恩斯坦型信心集并提出了改进的算法,该算法可实现$ \ tilde {\ Mathcal {o}}}(d b _ {\ star} \ sqrt {k/c/c/c {k/c _ {\ min}}) $遗憾。为了补充遗憾的上限,我们还证明了$ \ omega(db _ {\ star} \ sqrt {k})$的下限。因此,我们的改进算法将下限匹配到$ 1/\ sqrt {c _ {\ min}} $ factor和poly-logarithmic因素,从而实现了近乎最佳的遗憾保证。
translated by 谷歌翻译
随机游戏的学习可以说是多功能钢筋学习(MARL)中最标准和最基本的环境。在本文中,我们考虑在非渐近制度的随机游戏中分散的Marl。特别是,我们在大量的一般总和随机游戏(SGS)中建立了完全分散的Q学习算法的有限样本复杂性 - 弱循环SGS,包括对所有代理商的普通合作MARL设置具有相同的奖励(马尔可夫团队问题是一个特例。我们专注于实用的同时具有挑战性地设置完全分散的Marl,既不奖励也没有其他药剂的作用,每个试剂都可以观察到。事实上,每个特工都完全忘记了其他决策者的存在。表格和线性函数近似情况都已考虑。在表格设置中,我们分析了分散的Q学习算法的样本复杂性,以收敛到马尔可夫完美均衡(NASH均衡)。利用线性函数近似,结果用于收敛到线性近似平衡 - 我们提出的均衡的新概念 - 这描述了每个代理的策略是线性空间内的最佳回复(到其他代理)。还提供了数值实验,用于展示结果。
translated by 谷歌翻译
由政策引起的马尔可夫链的混合时间限制了现实世界持续学习场景中的性能。然而,混合时间对持续增强学习学习(RL)的影响仍然是曝光率。在本文中,我们表征了长期兴趣的问题,以通过混合时间调用可扩展的MDP来发展持续的RL。特别是,我们建立可扩展的MDP具有与问题的大小相等的混合时间。我们继续证明,多项式混合时间对现有方法产生显着困难,并提出了一种基于模型的算法,通过新颖的引导程序直接优化平均奖励来加速学习。最后,我们对我们提出的方法进行了实证遗憾分析,展示了对基线的清晰改进,以及如何使用可缩放的MDP来分析RL算法作为混合时间规模。
translated by 谷歌翻译
在强化学习(RL)中,目标是获得最佳政策,最佳标准在根本上至关重要。两个主要的最优标准是平均奖励和打折的奖励。虽然后者更受欢迎,但在没有固有折扣概念的情况下,在环境中申请是有问题的。这促使我们重新审视a)动态编程中最佳标准的进步,b)人工折现因子的理由和复杂性,c)直接最大化平均奖励标准的好处,这是无折扣的。我们的贡献包括对平均奖励和打折奖励之间的关系以及对RL中的利弊的讨论之间的关系。我们强调的是,平均奖励RL方法具有将无折扣优化标准(Veinott,1969)应用于RL的成分和机制。
translated by 谷歌翻译
我们研究了随机的最短路径(SSP)问题,其中代理商必须以最短的预计成本达到目标状态。在问题的学习制定中,代理商没有关于模型的成本和动态的知识。她反复与k $剧集的型号交互,并且必须尽量减少她的遗憾。在这项工作中,我们表明这个设置的Minimax遗憾是$ \ widetilde o(\ sqrt {(b_ \ star ^ 2 + b_ \ star)| s | a | a | k})$ why $ b_ \ star $ a符合来自任何州的最佳政策的预期成本,$ S $是状态空间,$ a $是行动空间。此相匹配的$ \欧米茄(\ SQRT {B_ \星^ 2 | S | |甲| K})$下界Rosenberg等人的。 [2020]对于$ b_ \ star \ ge 1 $,并改善了他们的遗憾,以\ sqrt {| s |} $ \ you的遗憾。对于$ b_ \ star <1 $我们证明$ \ omega的匹配下限(\ sqrt {b_ \ star | s | a | a | k})$。我们的算法基于SSP的新颖减少到有限地平线MDP。为此,我们为有限地域设置提供了一种算法,其前期遗憾遗憾地取决于最佳政策的预期成本,并且仅对地平线上的对数。
translated by 谷歌翻译
我们介绍了一种普遍的策略,可实现有效的多目标勘探。它依赖于adagoal,一种基于简单约束优化问题的新的目标选择方案,其自适应地针对目标状态,这既不是太困难也不是根据代理目前的知识达到的。我们展示了Adagoal如何用于解决学习$ \ epsilon $ -optimal的目标条件的政策,以便在$ L $ S_0 $ S_0 $奖励中获得的每一个目标状态,以便在$ S_0 $中获取。免费马尔可夫决策过程。在标准的表格外壳中,我们的算法需要$ \ tilde {o}(l ^ 3 s a \ epsilon ^ { - 2})$探索步骤,这几乎很少最佳。我们还容易在线性混合Markov决策过程中实例化Adagoal,其产生具有线性函数近似的第一目标导向的PAC保证。除了强大的理论保证之外,迈克纳队以现有方法的高级别算法结构为锚定,为目标条件的深度加固学习。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
Epsilon-Greedy,SoftMax或Gaussian噪声等近视探索政策在某些强化学习任务中无法有效探索,但是在许多其他方面,它们的表现都很好。实际上,实际上,由于简单性,它们通常被选为最佳选择。但是,对于哪些任务执行此类政策成功?我们可以为他们的有利表现提供理论保证吗?尽管这些政策具有显着的实际重要性,但这些关键问题几乎没有得到研究。本文介绍了对此类政策的理论分析,并为通过近视探索提供了对增强学习的首次遗憾和样本复杂性。我们的结果适用于具有有限的Bellman Eluder维度的情节MDP中的基于价值功能的算法。我们提出了一种新的复杂度度量,称为近视探索差距,用Alpha表示,该差距捕获了MDP的结构属性,勘探策略和给定的值函数类别。我们表明,近视探索的样品复杂性与该数量的倒数1 / alpha^2二次地量表。我们通过具体的例子进一步证明,由于相应的动态和奖励结构,在近视探索成功的几项任务中,近视探索差距确实是有利的。
translated by 谷歌翻译
Softmax政策的政策梯度(PG)估计与子最佳饱和初始化无效,当密度集中在次良动作时发生。从策略初始化或策略已经收敛后发生的环境的突然变化可能会出现次优策略饱和度,并且SoftMax PG估计器需要大量更新以恢复有效的策略。这种严重问题导致高样本低效率和对新情况的适应性差。为缓解此问题,我们提出了一种新的政策梯度估计,用于软MAX策略,该估计在批评中利用批评中的偏差和奖励信号中存在的噪声来逃避策略参数空间的饱和区域。我们对匪徒和古典MDP基准测试任务进行了分析和实验,表明我们的估算变得更加坚固,以便对政策饱和度更加强大。
translated by 谷歌翻译
我们考虑非平稳马尔可夫决策过程中的无模型增强学习(RL)。只要其累积变化不超过某些变化预算,奖励功能和国家过渡功能都可以随时间随时间变化。我们提出了重新启动的Q学习,以上置信度范围(RestartQ-UCB),这是第一个用于非平稳RL的无模型算法,并表明它在动态遗憾方面优于现有的解决方案。具体而言,带有freedman型奖励项的restartq-ucb实现了$ \ widetilde {o}(s^{\ frac {1} {3}} {\ frac {\ frac {1} {1} {3}} {3}} {3}} {3}} {3}} {3}} {3}} {3}} {\ delta ^{\ frac {1} {3}} h t^{\ frac {2} {3}}} $,其中$ s $和$ a $分别是$ \ delta> 0 $的状态和动作的数字是变化预算,$ h $是每集的时间步数,而$ t $是时间步长的总数。我们进一步提出了一种名为Double-Restart Q-UCB的无参数算法,该算法不需要事先了解变化预算。我们证明我们的算法是\ emph {几乎是最佳},通过建立$ \ omega的信息理论下限(s^{\ frac {1} {1} {3}}} a^{\ frac {1} {1} {3}}}}}} \ delta^{\ frac {1} {3}} h^{\ frac {2} {3}}}} t^{\ frac {2} {3}}} $,是非稳态RL中的第一个下下限。数值实验可以根据累积奖励和计算效率来验证RISTARTQ-UCB的优势。我们在相关产品的多代理RL和库存控制的示例中证明了我们的结果的力量。
translated by 谷歌翻译
价值迭代(VI)是一种基础动态编程方法,对于最佳控制和强化学习的学习和计划很重要。 VI分批进行,其中必须完成对每个状态值的更新,然后才能开始下一批更新。如果状态空间较大,完成单批次的昂贵,那么对于许多应用来说,VI不切实际。异步VI通过一次,就地和任意顺序一次更新一个状态来帮助解决大型状态空间问题。但是,异步VI仍然需要在整个动作空间上最大化,这使得对具有较大动作空间的域不切实际。为了解决这个问题,我们提出了双重同步价值迭代(DAVI),这是一种新算法,将异步从各州到州和行动的概念推广。更具体地说,DAVI在可以使用用户定义的大小的采样子集上最大化。使用采样来减少计算的这种简单方法使VI具有类似吸引人的理论属性,而无需等待每个更新中的整个动作空间进行全面扫描。在本文中,我们显示了DAVI收敛到最佳值函数,概率是,以接近几何的速率与概率1-delta收敛,并在计算时间中返回近乎最佳的策略,该策略几乎与先前建立的对VI结合的限制。我们还从经验上证明了Davi在几个实验中的有效性。
translated by 谷歌翻译
我们研究了基于模型的未识别的强化学习,用于部分可观察到的马尔可夫决策过程(POMDPS)。我们认为的Oracle是POMDP的最佳政策,其在无限视野的平均奖励方面具有已知环境。我们为此问题提出了一种学习算法,基于隐藏的马尔可夫模型的光谱方法估计,POMDPS中的信念错误控制以及在线学习的上等信心结合方法。我们为提出的学习算法建立了$ o(t^{2/3} \ sqrt {\ log t})$的后悔界限,其中$ t $是学习范围。据我们所知,这是第一种算法,这是对我们学习普通POMDP的甲骨文的统一性后悔。
translated by 谷歌翻译
具有很多玩家的非合作和合作游戏具有许多应用程序,但是当玩家数量增加时,通常仍然很棘手。由Lasry和Lions以及Huang,Caines和Malham \'E引入的,平均野外运动会(MFGS)依靠平均场外近似值,以使玩家数量可以成长为无穷大。解决这些游戏的传统方法通常依赖于以完全了解模型的了解来求解部分或随机微分方程。最近,增强学习(RL)似乎有望解决复杂问题。通过组合MFGS和RL,我们希望在人口规模和环境复杂性方面能够大规模解决游戏。在这项调查中,我们回顾了有关学习MFG中NASH均衡的最新文献。我们首先确定最常见的设置(静态,固定和进化)。然后,我们为经典迭代方法(基于最佳响应计算或策略评估)提供了一个通用框架,以确切的方式解决MFG。在这些算法和与马尔可夫决策过程的联系的基础上,我们解释了如何使用RL以无模型的方式学习MFG解决方案。最后,我们在基准问题上介绍了数值插图,并以某些视角得出结论。
translated by 谷歌翻译
逆钢筋学习尝试在马尔可夫决策问题中重建奖励功能,使用代理操作的观察。正如Russell [1998]在Russell [1998]的那样,问题均为不良,即使在存在有关最佳行为的完美信息的情况下,奖励功能也无法识别。我们为熵正则化的问题提供了解决这种不可识别性的分辨率。对于给定的环境,我们完全表征了导致给定政策的奖励函数,并证明,在两个不同的折扣因子下或在足够的不同环境下给出了相同奖励的行动的示范,可以恢复不可观察的奖励。我们还向有限视野进行时间均匀奖励的一般性和充分条件,以及行动无关的奖励,概括Kim等人的最新结果。[2021]和Fu等人。[2018]。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
本文讨论了一种学习最佳Q功能的基本问题的新方法。在这种方法中,最佳Q函数被配制为源自经典Bellman最优方程的非线性拉格朗日函数的鞍点。该论文表明,尽管非线性具有非线性,但拉格朗日人仍然具有很强的双重性,这为Q-function学习的一般方法铺平了道路。作为演示,本文根据二元性理论开发了模仿学习算法,并将算法应用于最先进的机器翻译基准。然后,该论文转弯以证明有关拉格朗日鞍点的最佳性的对称性破坏现象,这证明了开发拉格朗日方法的很大程度上被忽视的方向。
translated by 谷歌翻译