在强化学习(RL)中,目标是获得最佳政策,最佳标准在根本上至关重要。两个主要的最优标准是平均奖励和打折的奖励。虽然后者更受欢迎,但在没有固有折扣概念的情况下,在环境中申请是有问题的。这促使我们重新审视a)动态编程中最佳标准的进步,b)人工折现因子的理由和复杂性,c)直接最大化平均奖励标准的好处,这是无折扣的。我们的贡献包括对平均奖励和打折奖励之间的关系以及对RL中的利弊的讨论之间的关系。我们强调的是,平均奖励RL方法具有将无折扣优化标准(Veinott,1969)应用于RL的成分和机制。
translated by 谷歌翻译
对于持续的环境,加固学习(RL)方法通常会以接近1的折扣因子最大化折扣奖励标准,以便近似于平均奖励(增益)。但是,这样的标准仅考虑长期稳态性能,忽略了瞬态状态的瞬态行为。在这项工作中,我们开发了一种优化增益的策略梯度方法,然后是偏差(这表明瞬态性能,并且重要的是从同等增益的策略中进行选择很重要)。我们得出表达式,可以为偏差的梯度及其预处理的Fisher矩阵进行采样。我们进一步设计了一种算法,该算法可以解决增益 - 然后偏置(BI级)优化。它的关键成分是RL特异性的对数屏障函数。实验结果提供了有关我们提案的基本机制的见解。
translated by 谷歌翻译
由政策引起的马尔可夫链的混合时间限制了现实世界持续学习场景中的性能。然而,混合时间对持续增强学习学习(RL)的影响仍然是曝光率。在本文中,我们表征了长期兴趣的问题,以通过混合时间调用可扩展的MDP来发展持续的RL。特别是,我们建立可扩展的MDP具有与问题的大小相等的混合时间。我们继续证明,多项式混合时间对现有方法产生显着困难,并提出了一种基于模型的算法,通过新颖的引导程序直接优化平均奖励来加速学习。最后,我们对我们提出的方法进行了实证遗憾分析,展示了对基线的清晰改进,以及如何使用可缩放的MDP来分析RL算法作为混合时间规模。
translated by 谷歌翻译
一种简单自然的增强学习算法(RL)是蒙特卡洛探索开始(MCES),通过平均蒙特卡洛回报来估算Q功能,并通过选择最大化Q当前估计的行动来改进策略。 -功能。探索是通过“探索开始”来执行的,即每个情节以随机选择的状态和动作开始,然后遵循当前的策略到终端状态。在Sutton&Barto(2018)的RL经典书中,据说建立MCES算法的收敛是RL中最重要的剩余理论问题之一。但是,MCE的收敛问题证明是非常细微的。 Bertsekas&Tsitsiklis(1996)提供了一个反例,表明MCES算法不一定会收敛。 TSITSIKLIS(2002)进一步表明,如果修改了原始MCES算法,以使Q-功能估计值以所有状态行动对以相同的速率更新,并且折现因子严格少于一个,则MCES算法收敛。在本文中,我们通过Sutton&Barto(1998)中给出的原始,更有效的MCES算法取得进展政策。这样的MDP包括大量的环境,例如所有确定性环境和所有具有时间步长的情节环境或作为状态的任何单调变化的值。与以前使用随机近似的证据不同,我们引入了一种新型的感应方法,该方法非常简单,仅利用大量的强规律。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
在强化学习中,蒙特卡洛算法通过平均偶发回报来更新Q功能。在Monte Carlo UCB(MC-UCB)算法中,在每个状态下采取的动作是最大化Q函数加上UCB勘探项的动作,该术语偏向于选择频率较低的动作的选择。尽管在为MC-UCB建立遗憾界限方面已经进行了重要的工作,但大多数工作都集中在该问题的有限培训版本上,每个情节都在不断数量的步骤后终止。对于此类有限的Horizo​​n问题,最佳策略既取决于当前状态和情节中的时间。但是,对于许多自然的情节问题,例如GO,CHESS和机器人任务等游戏,该情节是随机的,最佳政策是静止的。对于此类环境,MC-UCB中的Q功能是否会收敛到最佳Q函数,这是一个空旷的问题。我们猜想,与Q学习不同,它并不是所有MDP的收敛。尽管如此,我们表明,对于大型MDP,其中包括二十一点和确定性MDP等随机MDP,例如GO,MC-UCB中的Q功能几乎可以肯定地收敛到最佳Q函数。该结果的直接推论是,它几乎肯定会为所有有限的Horizo​​n MDP收敛。我们还提供了数值实验,为MC-UCB提供了进一步的见解。
translated by 谷歌翻译
在线强化学习(RL)中的挑战之一是代理人需要促进对环境的探索和对样品的利用来优化其行为。无论我们是否优化遗憾,采样复杂性,状态空间覆盖范围或模型估计,我们都需要攻击不同的勘探开发权衡。在本文中,我们建议在分离方法组成的探索 - 剥削问题:1)“客观特定”算法(自适应)规定哪些样本以收集到哪些状态,似乎它可以访问a生成模型(即环境的模拟器); 2)负责尽可能快地生成规定样品的“客观无关的”样品收集勘探策略。建立最近在随机最短路径问题中进行探索的方法,我们首先提供一种算法,它给出了每个状态动作对所需的样本$ B(S,a)$的样本数量,需要$ \ tilde {o} (bd + d ^ {3/2} s ^ 2 a)收集$ b = \ sum_ {s,a} b(s,a)$所需样本的$时间步骤,以$ s $各国,$ a $行动和直径$ d $。然后我们展示了这种通用探索算法如何与“客观特定的”策略配对,这些策略规定了解决各种设置的样本要求 - 例如,模型估计,稀疏奖励发现,无需无成本勘探沟通MDP - 我们获得改进或新颖的样本复杂性保证。
translated by 谷歌翻译
具有很多玩家的非合作和合作游戏具有许多应用程序,但是当玩家数量增加时,通常仍然很棘手。由Lasry和Lions以及Huang,Caines和Malham \'E引入的,平均野外运动会(MFGS)依靠平均场外近似值,以使玩家数量可以成长为无穷大。解决这些游戏的传统方法通常依赖于以完全了解模型的了解来求解部分或随机微分方程。最近,增强学习(RL)似乎有望解决复杂问题。通过组合MFGS和RL,我们希望在人口规模和环境复杂性方面能够大规模解决游戏。在这项调查中,我们回顾了有关学习MFG中NASH均衡的最新文献。我们首先确定最常见的设置(静态,固定和进化)。然后,我们为经典迭代方法(基于最佳响应计算或策略评估)提供了一个通用框架,以确切的方式解决MFG。在这些算法和与马尔可夫决策过程的联系的基础上,我们解释了如何使用RL以无模型的方式学习MFG解决方案。最后,我们在基准问题上介绍了数值插图,并以某些视角得出结论。
translated by 谷歌翻译
我们介绍了一种改进政策改进的方法,该方法在基于价值的强化学习(RL)的贪婪方法与基于模型的RL的典型计划方法之间进行了插值。新方法建立在几何视野模型(GHM,也称为伽马模型)的概念上,该模型对给定策略的折现状态验证分布进行了建模。我们表明,我们可以通过仔细的基本策略GHM的仔细组成,而无需任何其他学习,可以评估任何非马尔科夫策略,以固定的概率在一组基本马尔可夫策略之间切换。然后,我们可以将广义政策改进(GPI)应用于此类非马尔科夫政策的收集,以获得新的马尔可夫政策,通常将其表现优于其先驱。我们对这种方法提供了彻底的理论分析,开发了转移和标准RL的应用,并在经验上证明了其对标准GPI的有效性,对充满挑战的深度RL连续控制任务。我们还提供了GHM培训方法的分析,证明了关于先前提出的方法的新型收敛结果,并显示了如何在深度RL设置中稳定训练这些模型。
translated by 谷歌翻译
本文讨论了一种学习最佳Q功能的基本问题的新方法。在这种方法中,最佳Q函数被配制为源自经典Bellman最优方程的非线性拉格朗日函数的鞍点。该论文表明,尽管非线性具有非线性,但拉格朗日人仍然具有很强的双重性,这为Q-function学习的一般方法铺平了道路。作为演示,本文根据二元性理论开发了模仿学习算法,并将算法应用于最先进的机器翻译基准。然后,该论文转弯以证明有关拉格朗日鞍点的最佳性的对称性破坏现象,这证明了开发拉格朗日方法的很大程度上被忽视的方向。
translated by 谷歌翻译
策略梯度方法适用于复杂的,不理解的,通过对参数化的策略进行随机梯度下降来控制问题。不幸的是,即使对于可以通过标准动态编程技术解决的简单控制问题,策略梯度算法也会面临非凸优化问题,并且被广泛理解为仅收敛到固定点。这项工作确定了结构属性 - 通过几个经典控制问题共享 - 确保策略梯度目标函数尽管是非凸面,但没有次优的固定点。当这些条件得到加强时,该目标满足了产生收敛速率的Polyak-lojasiewicz(梯度优势)条件。当其中一些条件放松时,我们还可以在任何固定点的最佳差距上提供界限。
translated by 谷歌翻译
In this paper we develop a theoretical analysis of the performance of sampling-based fitted value iteration (FVI) to solve infinite state-space, discounted-reward Markovian decision processes (MDPs) under the assumption that a generative model of the environment is available. Our main results come in the form of finite-time bounds on the performance of two versions of sampling-based FVI. The convergence rate results obtained allow us to show that both versions of FVI are well behaving in the sense that by using a sufficiently large number of samples for a large class of MDPs, arbitrary good performance can be achieved with high probability. An important feature of our proof technique is that it permits the study of weighted L p -norm performance bounds. As a result, our technique applies to a large class of function-approximation methods (e.g., neural networks, adaptive regression trees, kernel machines, locally weighted learning), and our bounds scale well with the effective horizon of the MDP. The bounds show a dependence on the stochastic stability properties of the MDP: they scale with the discounted-average concentrability of the future-state distributions. They also depend on a new measure of the approximation power of the function space, the inherent Bellman residual, which reflects how well the function space is "aligned" with the dynamics and rewards of the MDP. The conditions of the main result, as well as the concepts introduced in the analysis, are extensively discussed and compared to previous theoretical results. Numerical experiments are used to substantiate the theoretical findings.
translated by 谷歌翻译
我们考虑在平均场比赛中在线加强学习。与现有作品相反,我们通过开发一种使用通用代理的单个样本路径来估算均值场和最佳策略的算法来减轻对均值甲骨文的需求。我们称此沙盒学习为其,因为它可以用作在多代理非合作环境中运行的任何代理商的温暖启动。我们采用了两种时间尺度的方法,在该方法中,平均场的在线固定点递归在较慢的时间表上运行,并与通用代理更快的时间范围内的控制策略更新同时进行。在足够的勘探条件下,我们提供有限的样本收敛保证,从平均场和控制策略融合到平均场平衡方面。沙盒学习算法的样本复杂性为$ \ Mathcal {o}(\ epsilon^{ - 4})$。最后,我们从经验上证明了沙盒学习算法在交通拥堵游戏中的有效性。
translated by 谷歌翻译
In robust Markov decision processes (MDPs), the uncertainty in the transition kernel is addressed by finding a policy that optimizes the worst-case performance over an uncertainty set of MDPs. While much of the literature has focused on discounted MDPs, robust average-reward MDPs remain largely unexplored. In this paper, we focus on robust average-reward MDPs, where the goal is to find a policy that optimizes the worst-case average reward over an uncertainty set. We first take an approach that approximates average-reward MDPs using discounted MDPs. We prove that the robust discounted value function converges to the robust average-reward as the discount factor $\gamma$ goes to $1$, and moreover, when $\gamma$ is large, any optimal policy of the robust discounted MDP is also an optimal policy of the robust average-reward. We further design a robust dynamic programming approach, and theoretically characterize its convergence to the optimum. Then, we investigate robust average-reward MDPs directly without using discounted MDPs as an intermediate step. We derive the robust Bellman equation for robust average-reward MDPs, prove that the optimal policy can be derived from its solution, and further design a robust relative value iteration algorithm that provably finds its solution, or equivalently, the optimal robust policy.
translated by 谷歌翻译
人工智能(AI)的努力是设计能够完成复杂任务的自主代理。也就是说,加强学习(RL)提出了学习最佳行为的理论背景。实际上,RL算法依靠几何折扣来评估这种最优性。不幸的是,这并不涵盖未来回报并没有达到成倍价值的决策过程。根据问题的不同,此限制会引起样本信息(由于饲料后额定值是指数衰减),并且需要其他课程/探索机制(以处理稀疏,欺骗性或对抗性奖励)。在本文中,我们通过通过延迟目标功能将折现问题提出来解决这些问题。我们研究了得出的基本RL问题:1)最佳固定解和2)最佳非平稳控制的近似值。设计的算法解决了表格环境上的​​硬探索问题,并在经典的模拟机器人基准上提高了样品效率。
translated by 谷歌翻译
我们在Isabelle定理箴言中展示了有限马尔可夫决定流程的正式化。我们专注于动态编程和使用加固学习代理所需的基础。特别是,我们从第一个原则(在标量和向量形式中)导出Bellman方程,导出产生任何策略P的预期值的向量计算,并继续证明存在一个普遍的最佳政策的存在折扣因子不到一个。最后,我们证明了价值迭代和策略迭代算法在有限的时间内工作,分别产生ePsilon - 最佳和完全最佳的政策。
translated by 谷歌翻译
由于策略梯度定理导致的策略设置存在各种理论上 - 声音策略梯度算法,其为梯度提供了简化的形式。然而,由于存在多重目标和缺乏明确的脱助政策政策梯度定理,截止策略设置不太明确。在这项工作中,我们将这些目标统一到一个违规目标,并为此统一目标提供了政策梯度定理。推导涉及强调的权重和利息职能。我们显示多种策略来近似梯度,以识别权重(ACE)称为Actor评论家的算法。我们证明了以前(半梯度)脱离政策演员 - 评论家 - 特别是offpac和DPG - 收敛到错误的解决方案,而Ace找到最佳解决方案。我们还强调为什么这些半梯度方法仍然可以在实践中表现良好,表明ace中的方差策略。我们经验研究了两个经典控制环境的若干ACE变体和基于图像的环境,旨在说明每个梯度近似的权衡。我们发现,通过直接逼近强调权重,ACE在所有测试的所有设置中执行或优于offpac。
translated by 谷歌翻译
The reward hypothesis posits that, "all of what we mean by goals and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (reward)." We aim to fully settle this hypothesis. This will not conclude with a simple affirmation or refutation, but rather specify completely the implicit requirements on goals and purposes under which the hypothesis holds.
translated by 谷歌翻译
We develop an extension of posterior sampling for reinforcement learning (PSRL) that is suited for a continuing agent-environment interface and integrates naturally into agent designs that scale to complex environments. The approach maintains a statistically plausible model of the environment and follows a policy that maximizes expected $\gamma$-discounted return in that model. At each time, with probability $1-\gamma$, the model is replaced by a sample from the posterior distribution over environments. For a suitable schedule of $\gamma$, we establish an $\tilde{O}(\tau S \sqrt{A T})$ bound on the Bayesian regret, where $S$ is the number of environment states, $A$ is the number of actions, and $\tau$ denotes the reward averaging time, which is a bound on the duration required to accurately estimate the average reward of any policy.
translated by 谷歌翻译
最近有兴趣了解地平线依赖于加固学习(RL)的样本复杂性。值得注意的是,对于具有Horizo​​ n长度$ H $的RL环境,之前的工作表明,使用$ \ mathrm {polylog}(h)有可能学习$ o(1)$ - 最佳策略的可能大致正确(pac)算法$当州和行动的数量固定时的环境交互剧集。它尚不清楚$ \ mathrm {polylog}(h)$依赖性是必要的。在这项工作中,我们通过开发一种算法来解决这个问题,该算法在仅使用ONTO(1)美元的环境交互的同时实现相同的PAC保证,完全解决RL中样本复杂性的地平线依赖性。我们通过(i)在贴现和有限地平线马尔可夫决策过程(MDP)和(ii)在MDP中的新型扰动分析中建立价值函数之间的联系。我们相信我们的新技术具有独立兴趣,可在RL中应用相关问题。
translated by 谷歌翻译