视频流连续交付,以节省存储和设备内存的成本。用户设备上通常采用实时denoising算法,以消除视频流的拍摄和传输过程中所涉及的噪声。但是,基于滑动窗口的方法为单个输出和缺乏计算效率的多个输入帧提供了多个输入帧。最近的多输出推荐工作可以通过平行或经常性的框架传播双向时间功能,这要么在剪辑的时间边缘上的性能下降,要么无法在线推断。在本文中,我们提出了一个双向流视频Denoisising(BSVD)框架,以实现具有过去和将来的暂时接收领域的流式传输视频的高保真实时DENOSISing。在线推理的双向时间融合被认为不适用于Movinet。但是,我们引入了一个新型的双向缓冲块作为我们BSVD的核心模块,这使我们在管道风格的推理过程中成为可能。此外,我们的方法简洁明了,可以在非盲和盲视频降解中使用。我们将模型与各种最先进的视频denoising模型在定性和定量上在合成和真实噪声上进行了比较。我们的方法在恢复保真度和运行时优于先前的方法。我们的源代码可在https://github.com/chenyangqiqi/bsvd上公开获得。
translated by 谷歌翻译
旨在恢复降级视频清晰框架的视频修复一直在吸引越来越多的关注。需要进行视频修复来建立来自多个未对准帧的时间对应关系。为了实现这一目标,现有的深层方法通常采用复杂的网络体系结构,例如集成光流,可变形卷积,跨框或跨像素自我发项层,从而导致昂贵的计算成本。我们认为,通过适当的设计,视频修复中的时间信息利用可能会更加有效。在这项研究中,我们提出了一个简单,快速但有效的视频修复框架。我们框架的关键是分组的时空转移,它简单且轻巧,但可以隐式建立框架间的对应关系并实现多框架聚合。加上用于框架编码和解码的基本2D U-NET,这种有效的时空移位模块可以有效地应对视频修复中的挑战。广泛的实验表明,我们的框架超过了先前的最先进方法,其计算成本的43%在视频DeBlurring和Video Denoisising上。
translated by 谷歌翻译
基于常规卷积网络的视频超分辨率(VSR)方法具有很强的视频序列的时间建模能力。然而,在单向反复卷积网络中的不同反复单元接收的输入信息不平衡。早期重建帧接收较少的时间信息,导致模糊或工件效果。虽然双向反复卷积网络可以缓解这个问题,但它大大提高了重建时间和计算复杂性。它也不适用于许多应用方案,例如在线超分辨率。为了解决上述问题,我们提出了一种端到端信息预构建的经常性重建网络(IPRRN),由信息预构建网络(IPNet)和经常性重建网络(RRNET)组成。通过将足够的信息从视频的前面集成来构建初始复发单元所需的隐藏状态,以帮助恢复较早的帧,信息预构建的网络在不向后传播之前和之后的输入信息差异。此外,我们展示了一种紧凑的复发性重建网络,可显着改善恢复质量和时间效率。许多实验已经验证了我们所提出的网络的有效性,并与现有的最先进方法相比,我们的方法可以有效地实现更高的定量和定性评估性能。
translated by 谷歌翻译
视频修复旨在从多个低质量框架中恢复多个高质量的帧。现有的视频修复方法通常属于两种极端情况,即它们并行恢复所有帧,或者以复发方式恢复视频框架,这将导致不同的优点和缺点。通常,前者具有时间信息融合的优势。但是,它遭受了较大的模型尺寸和密集的内存消耗;后者的模型大小相对较小,因为它在跨帧中共享参数。但是,它缺乏远程依赖建模能力和并行性。在本文中,我们试图通过提出经常性视频恢复变压器(即RVRT)来整合两种情况的优势。 RVRT在全球经常性的框架内并行处理本地相邻框架,该框架可以在模型大小,有效性和效率之间实现良好的权衡。具体而言,RVRT将视频分为多个剪辑,并使用先前推断的剪辑功能来估计后续剪辑功能。在每个剪辑中,通过隐式特征聚合共同更新不同的帧功能。在不同的剪辑中,引导的变形注意力是为剪辑对齐对齐的,该剪辑对齐可预测整个推断的夹子中的多个相关位置,并通过注意机制汇总其特征。关于视频超分辨率,DeBlurring和DeNoising的广泛实验表明,所提出的RVRT在具有平衡模型大小,测试内存和运行时的基准数据集上实现了最先进的性能。
translated by 谷歌翻译
视频修复(例如,视频超分辨率)旨在从低品质框架中恢复高质量的帧。与单图像恢复不同,视频修复通常需要从多个相邻但通常未对准视频帧的时间信息。现有的深度方法通常通过利用滑动窗口策略或经常性体系结构来解决此问题,该策略要么受逐帧恢复的限制,要么缺乏远程建模能力。在本文中,我们提出了一个带有平行框架预测和远程时间依赖性建模能力的视频恢复变压器(VRT)。更具体地说,VRT由多个量表组成,每个量表由两种模块组成:时间相互注意(TMSA)和平行翘曲。 TMSA将视频分为小剪辑,将相互关注用于关节运动估计,特征对齐和特征融合,而自我注意力则用于特征提取。为了启用交叉交互,视频序列对其他每一层都发生了变化。此外,通过并行功能翘曲,并行翘曲用于进一步从相邻帧中融合信息。有关五项任务的实验结果,包括视频超分辨率,视频脱张,视频denoising,视频框架插值和时空视频超级分辨率,证明VRT优于大幅度的最先进方法($ \ textbf) {最高2.16db} $)在十四个基准数据集上。
translated by 谷歌翻译
现有的视频denoising方法通常假设嘈杂的视频通过添加高斯噪声从干净的视频中降低。但是,经过这种降解假设训练的深层模型将不可避免地导致由于退化不匹配而导致的真实视频的性能差。尽管一些研究试图在摄像机捕获的嘈杂和无噪声视频对上训练深层模型,但此类模型只能对特定的相机很好地工作,并且对其他视频的推广不佳。在本文中,我们建议提高此限制,并专注于一般真实视频的问题,目的是在看不见的现实世界视频上概括。我们首先调查视频噪音的共同行为来解决这个问题,并观察两个重要特征:1)缩减有助于降低空间空间中的噪声水平; 2)来自相邻框架的信息有助于消除时间上的当前框架的噪声空间。在这两个观察结果的推动下,我们通过充分利用上述两个特征提出了多尺度的复发架构。其次,我们通过随机调整不同的噪声类型来训练Denoising模型来提出合成真实的噪声降解模型。借助合成和丰富的降解空间,我们的退化模型可以帮助弥合训练数据和现实世界数据之间的分布差距。广泛的实验表明,与现有方法相比,我们所提出的方法实现了最先进的性能和更好的概括能力,而在合成高斯denoising和实用的真实视频denoisising方面都具有现有方法。
translated by 谷歌翻译
尽管在深层视频降级中取得了重大进展,但利用历史和未来框架仍然非常具有挑战性。双向反复网络(BIRNN)在几个视频恢复任务中表现出吸引力的表现。但是,Birnn本质上是离线的,因为它使用向后的复发模块从最后一个帧传播到当前帧,这会导致高潜伏期和大型内存消耗。为了解决Birnn的离线问题,我们提出了一个新颖的经常性网络,该网络由向单向视频DeNoising的前向和观察的经常性模块组成。特别是,look-aver-aph模块是一个精心设计的前向模块,用于利用近距离框架的信息。当降级当前框架时,将隐藏的特征组合出来,并相互反复的模块组合,从而使其可行,可以利用历史和近乎未来的框架。由于不邻近框架之间的现场运动,当从近距离框架到当前框架的扭曲外观功能时,可能会失踪边界像素,这可以通过合并前向翘曲和拟议边框扩大来大大减轻。实验表明,我们的方法通过持续的延迟和记忆消耗实现最先进的性能。代码可在https://github.com/nagejacob/flornn上提供可用。
translated by 谷歌翻译
在本文中,我们研究了实用的时空视频超分辨率(STVSR)问题,该问题旨在从低型低分辨率的低分辨率模糊视频中生成高富含高分辨率的夏普视频。当使用低填充和低分辨率摄像头记录快速动态事件时,通常会发生这种问题,而被捕获的视频将遭受三个典型问题:i)运动模糊发生是由于曝光时间内的对象/摄像机运动而发生的; ii)当事件时间频率超过时间采样的奈奎斯特极限时,运动异叠是不可避免的; iii)由于空间采样率低,因此丢失了高频细节。这些问题可以通过三个单独的子任务的级联来缓解,包括视频脱张,框架插值和超分辨率,但是,这些问题将无法捕获视频序列之间的空间和时间相关性。为了解决这个问题,我们通过利用基于模型的方法和基于学习的方法来提出一个可解释的STVSR框架。具体而言,我们将STVSR作为联合视频脱张,框架插值和超分辨率问题,并以另一种方式将其作为两个子问题解决。对于第一个子问题,我们得出了可解释的分析解决方案,并将其用作傅立叶数据变换层。然后,我们为第二个子问题提出了一个反复的视频增强层,以进一步恢复高频细节。广泛的实验证明了我们方法在定量指标和视觉质量方面的优势。
translated by 谷歌翻译
本文回顾了关于压缩视频质量增强质量的第一个NTIRE挑战,重点是拟议的方法和结果。在此挑战中,采用了新的大型不同视频(LDV)数据集。挑战有三个曲目。Track 1和2的目标是增强HEVC在固定QP上压缩的视频,而Track 3旨在增强X265压缩的视频,以固定的位速率压缩。此外,轨道1和3的质量提高了提高保真度(PSNR)的目标,以及提高感知质量的2个目标。这三个曲目完全吸引了482个注册。在测试阶段,分别提交了12个团队,8支球队和11支球队,分别提交了轨道1、2和3的最终结果。拟议的方法和解决方案衡量视频质量增强的最先进。挑战的首页:https://github.com/renyang-home/ntire21_venh
translated by 谷歌翻译
Video Super-Resolution (VSR) aims to restore high-resolution (HR) videos from low-resolution (LR) videos. Existing VSR techniques usually recover HR frames by extracting pertinent textures from nearby frames with known degradation processes. Despite significant progress, grand challenges are remained to effectively extract and transmit high-quality textures from high-degraded low-quality sequences, such as blur, additive noises, and compression artifacts. In this work, a novel Frequency-Transformer (FTVSR) is proposed for handling low-quality videos that carry out self-attention in a combined space-time-frequency domain. First, video frames are split into patches and each patch is transformed into spectral maps in which each channel represents a frequency band. It permits a fine-grained self-attention on each frequency band, so that real visual texture can be distinguished from artifacts. Second, a novel dual frequency attention (DFA) mechanism is proposed to capture the global frequency relations and local frequency relations, which can handle different complicated degradation processes in real-world scenarios. Third, we explore different self-attention schemes for video processing in the frequency domain and discover that a ``divided attention'' which conducts a joint space-frequency attention before applying temporal-frequency attention, leads to the best video enhancement quality. Extensive experiments on three widely-used VSR datasets show that FTVSR outperforms state-of-the-art methods on different low-quality videos with clear visual margins. Code and pre-trained models are available at https://github.com/researchmm/FTVSR.
translated by 谷歌翻译
尽管运动补偿大大提高了视频质量,但单独执行运动补偿和视频脱张需要大量的计算开销。本文提出了一个实时视频Deblurring框架,该框架由轻巧的多任务单元组成,该单元以有效的方式支持视频脱张和运动补偿。多任务单元是专门设计的,用于使用单个共享网络处理两个任务的大部分,并由多任务详细网络和简单的网络组成,用于消除和运动补偿。多任务单元最大程度地减少了将运动补偿纳入视频Deblurring的成本,并实现了实时脱毛。此外,通过堆叠多个多任务单元,我们的框架在成本和过度质量之间提供了灵活的控制。我们通过实验性地验证了方法的最先进的质量,与以前的方法相比,该方法的运行速度要快得多,并显示了实时的实时性能(在DVD数据集中测量了30.99db@30fps)。
translated by 谷歌翻译
现有视频超分辨率(VSR)算法的成功主要是从相邻框架中利用时间信息。但是,这些方法都没有讨论带有固定物体和背景的贴片中时间冗余的影响,并且通常使用相邻框架中的所有信息而没有任何歧视。在本文中,我们观察到时间冗余将对信息传播产生不利影响,这限制了最现有的VSR方法的性能。在这一观察结果的推动下,我们旨在通过以优化的方式处理时间冗余贴片来改善现有的VSR算法。我们开发了两种简单但有效的插件方法,以提高广泛使用的公共视频中现有的本地和非本地传播算法的性能。为了更全面地评估现有VSR算法的鲁棒性和性能,我们还收集了一个新数据集,其中包含各种公共视频作为测试集。广泛的评估表明,所提出的方法可以显着提高野生场景中收集的视频的现有VSR方法的性能,同时保持其在现有常用数据集上的性能。该代码可在https://github.com/hyhsimon/boosted-vsr上找到。
translated by 谷歌翻译
视频超分辨率(VSR)是从一系列低分辨率输入序列恢复高分辨率帧的任务。与单图超分辨率不同,VSR可以利用框架的时间信息来重建结果,并提供更多详细信息。最近,随着卷积神经网络(CNN)的快速发展,VSR任务引起了人们的关注,许多基于CNN的方法取得了显着的结果。但是,由于计算资源和运行时限制,只能将一些VSR方法应用于现实世界移动设备。在本文中,我们提出了一个\ textIt {基于滑动窗口的重复网络}(SWRN),该网络可以实时推断,同时仍能达到卓越的性能。具体而言,我们注意到视频帧应该具有可以帮助恢复细节的空间和时间关系,而关键点是如何提取和汇总信息。解决它,我们输入了三个相邻的帧,并利用隐藏状态来重复存储和更新重要的时间信息。我们在REDS数据集上的实验表明,所提出的方法可以很好地适应移动设备并产生视觉上令人愉悦的结果。
translated by 谷歌翻译
现实世界图像Denoising是一个实用的图像恢复问题,旨在从野外嘈杂的输入中获取干净的图像。最近,Vision Transformer(VIT)表现出强大的捕获远程依赖性的能力,许多研究人员试图将VIT应用于图像DeNosing任务。但是,现实世界的图像是一个孤立的框架,它使VIT构建了内部贴片的远程依赖性,该依赖性将图像分为贴片并混乱噪声模式和梯度连续性。在本文中,我们建议通过使用连续的小波滑动转换器来解决此问题,该小波滑动转换器在现实世界中构建频率对应关系,称为dnswin。具体而言,我们首先使用CNN编码器从嘈杂的输入图像中提取底部功能。 DNSWIN的关键是将高频和低频信息与功能和构建频率依赖性分开。为此,我们提出了小波滑动窗口变压器,该变压器利用离散的小波变换,自我注意力和逆离散小波变换来提取深度特征。最后,我们使用CNN解码器将深度特征重建为DeNo的图像。对现实世界的基准测试的定量和定性评估都表明,拟议的DNSWIN对最新方法的表现良好。
translated by 谷歌翻译
为了促进视频降解研究,我们构建了一个引人注目的数据集,即“实用的视频Denoising DataSet”(PVDD),其中包含200个SRGB和RAW格式的嘈杂清洁动态视频对。与由有限运动信息组成的现有数据集相比,PVDD涵盖了具有变化和自然运动的动态场景。与使用主要高斯或泊松分布的数据集不同,以合成SRGB域中的噪声,PVDD通过具有物理意义的传感器噪声模型,然后进行ISP处理,将原始域中的现实噪声合成现实的噪声。此外,基于此数据集,我们提出了一个基于洗牌的实用降解模型,以增强现实世界中SRGB视频的视频DeNoising网络的性能。广泛的实验表明,接受PVDD培训的模型在许多具有挑战性的现实视频上实现了优越的DeNo绩效,而不是在其他现有数据集中训练的模型上。
translated by 谷歌翻译
远程时间对齐至关重要,但对视频恢复任务有挑战性。最近,一些作品试图将远程对齐分成几个子对齐并逐步处理它们。虽然该操作有助于建模遥控对应关系,但由于传播机制,误差累积是不可避免的。在这项工作中,我们提出了一种新颖的通用迭代对准模块,其采用逐渐改进方案进行子对准,产生更准确的运动补偿。为了进一步提高对准精度和时间一致性,我们开发了一种非参数重新加权方法,其中每个相邻帧的重要性以用于聚合的空间方式自适应地评估。凭借拟议的策略,我们的模型在一系列视频恢复任务中实现了多个基准测试的最先进的性能,包括视频超分辨率,去噪和去束性。我们的项目可用于\ url {https:/github.com/redrock303/revisiting-temporal-alignment-for-video-Restion.git}。
translated by 谷歌翻译
由于大气湍流的扭曲而恢复图像是一个长期存在的问题,这是由于变形的空间变化,图像形成过程的非线性以及训练和测试数据的稀缺性。现有方法通常在失真模型上具有强大的统计假设,在许多情况下,由于没有概括,因此在现实世界中的性能有限。为了克服挑战,本文提出了一种端到端物理驱动的方法,该方法有效,可以推广到现实世界的湍流。在数据合成方面,我们通过通过宽sense式的平稳性近似随机场来显着增加SOTA湍流模拟器可以处理的图像分辨率。新的数据合成过程使大规模的多级湍流和训练的地面真相对产生。在网络设计方面,我们提出了湍流缓解变压器(TMT),这是一个两级U-NET形状的多帧恢复网络,该网络具有Noval有效的自发机制,称为暂时通道关节关注(TCJA)。我们还引入了一种新的培训方案,该方案由新的模拟器启用,并设计新的变压器单元以减少内存消耗。在静态场景和动态场景上的实验结果是有希望的,包括各种真实的湍流场景。
translated by 谷歌翻译
本文研究了动画视频的现实世界视频超分辨率(VSR)的问题,并揭示了实用动画VSR的三个关键改进。首先,最近的现实世界超分辨率方法通常依赖于使用基本运算符的降解模拟,而没有任何学习能力,例如模糊,噪声和压缩。在这项工作中,我们建议从真正的低质量动画视频中学习此类基本操作员,并将学习的操作员纳入降级生成管道中。这样的基于神经网络的基本操作员可以帮助更好地捕获实际降解的分布。其次,大规模的高质量动画视频数据集AVC构建,以促进动画VSR的全面培训和评估。第三,我们进一步研究了有效的多尺度网络结构。它利用单向复发网络的效率以及基于滑动窗口的方法的有效性。多亏了上述精致的设计,我们的方法Animesr能够有效,有效地恢复现实世界中的低质量动画视频,从而实现优于以前的最先进方法。
translated by 谷歌翻译
相邻帧的比对被认为是视频超分辨率(VSR)中的重要操作。高级VSR模型,包括最新的VSR变形金刚,通常配备精心设计的对齐模块。但是,自我注意机制的进步可能违反了这种常识。在本文中,我们重新考虑了对齐在VSR变压器中的作用,并进行了几种违反直觉的观察。我们的实验表明:(i)VSR变形金刚可以直接利用来自非对齐视频的多帧信息,并且(ii)现有的对齐方法有时对VSR变形金刚有害。这些观察结果表明,我们可以仅通过删除对齐模块并采用更大的注意力窗口来进一步提高VSR变压器的性能。然而,这样的设计将大大增加计算负担,无法处理大型动议。因此,我们提出了一种称为斑块对齐的新的,有效的对准方法,该方法将图像贴片而不是像素对齐。配备贴片对齐的VSR变形金刚可以在多个基准测试上证明最先进的性能。我们的工作提供了有关如何在VSR中使用多帧信息以及如何为不同网络/数据集选择对齐方法的宝贵见解。代码和模型将在https://github.com/xpixelgroup/rethinkvsralignment上发布。
translated by 谷歌翻译
快速移动受试者的运动模糊是摄影中的一个长期问题,由于收集效率有限,尤其是在弱光条件下,在手机上非常常见。尽管近年来我们目睹了图像脱毛的巨大进展,但大多数方法都需要显着的计算能力,并且在处理高分辨率照片的情况下具有严重的局部动作。为此,我们根据手机的双摄像头融合技术开发了一种新颖的面部脱毛系统。该系统检测到主题运动以动态启用参考摄像头,例如,最近在高级手机上通常可用的Ultrawide Angle摄像机,并捕获带有更快快门设置的辅助照片。虽然主镜头是低噪音但模糊的,但参考镜头却很锋利,但嘈杂。我们学习ML模型,以对齐和融合这两张镜头,并在没有运动模糊的情况下输出清晰的照片。我们的算法在Google Pixel 6上有效运行,每次拍摄需要463毫秒的开销。我们的实验证明了系统对替代单片,多帧,面部特异性和视频脱张算法以及商业产品的优势和鲁棒性。据我们所知,我们的工作是第一个用于面部运动脱毛的移动解决方案,在各种运动和照明条件下,在数千个图像中可靠地工作。
translated by 谷歌翻译