The evaluation of object detection models is usually performed by optimizing a single metric, e.g. mAP, on a fixed set of datasets, e.g. Microsoft COCO and Pascal VOC. Due to image retrieval and annotation costs, these datasets consist largely of images found on the web and do not represent many real-life domains that are being modelled in practice, e.g. satellite, microscopic and gaming, making it difficult to assert the degree of generalization learned by the model. We introduce the Roboflow-100 (RF100) consisting of 100 datasets, 7 imagery domains, 224,714 images, and 805 class labels with over 11,170 labelling hours. We derived RF100 from over 90,000 public datasets, 60 million public images that are actively being assembled and labelled by computer vision practitioners in the open on the web application Roboflow Universe. By releasing RF100, we aim to provide a semantically diverse, multi-domain benchmark of datasets to help researchers test their model's generalizability with real-life data. RF100 download and benchmark replication are available on GitHub.
translated by 谷歌翻译
We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
translated by 谷歌翻译
尽管对象检测方面取得了很大进展,但由于实例级边界盒注释所需的巨大人性化,大多数现有方法都仅限于一小一少量的对象类别。为了减轻问题,最近的开放词汇和零射击检测方法试图检测培训期间未见的对象类别。但是,这些方法仍然依赖于一组基类上手动提供的边界盒注释。我们提出了一个开放的词汇检测框架,可以在没有手动提供边界盒注释的情况下培训。我们的方法通过利用预先训练的视觉语言模型的本地化能力来实现这一目标,并产生可直接用于训练对象探测器的伪边界盒标签。 Coco,Pascal VOC,Objects365和LVIS的实验结果证明了我们方法的有效性。具体而言,我们的方法优于使用人类注释的边界箱训练的最先进(SOTA),即使我们的培训源未配备手动边界盒标签,也可以在COCO新型类别上用3%AP培训。在利用手动边界箱标签作为基线时,我们的方法主要超过8%的AP。
translated by 谷歌翻译
我们介绍了一些源自摄影师的本地化数据集,他们实际上试图了解他们拍摄的图像中的视觉内容。它包括有4,500多个视觉障碍者拍摄的超过4,500张图像中的100个类别的近10,000个细分。与现有的少数弹射对象检测和实例分段数据集相比,我们的数据集是第一个在对象中找到孔(例如,在我们的分段的12.3 \%中找到),它显示的对象相对于占据相对于尺寸的范围较大。图像和文本在我们的对象中的常见五倍以上(例如,在我们的分割的22.4%中找到)。对三种现代少量定位算法的分析表明,它们概括为我们的新数据集。这些算法通常很难找到带有孔,非常小且非常大的物体以及缺乏文本的物体的对象。为了鼓励更大的社区致力于这些尚未解决的挑战,我们在https://vizwiz.org上公开分享了带注释的少数数据集。
translated by 谷歌翻译
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the chal-
translated by 谷歌翻译
最近的方法表明,直接在大规模图像文本对集合上训练深神网络可以在各种识别任务上进行零拍传输。一个中心问题是如何将其推广到对象检测,这涉及本地化的非语义任务以及分类的语义任务。为了解决这个问题,我们引入了一种视觉嵌入对准方法,该方法将审计模型(例如夹子)(例如夹子)的概括能力传输到像Yolov5这样的对象检测器。我们制定了一个损耗函数,使我们能够将图像和文本嵌入在预审计的模型夹中对齐与检测器的修改语义预测头。通过这种方法,我们能够训练一个对象检测器,该对象检测器可以在可可,ILSVRC和视觉基因组零摄像机检测基准上实现最先进的性能。在推断期间,我们的模型可以适应以检测任何数量的对象类,而无需其他培训。我们还发现,标准对象检测缩放可以很好地传输到我们的方法,并在Yolov5模型和Yolov3模型的各种尺度上找到一致的改进。最后,我们开发了一种自我标记的方法,该方法可提供显着的分数改进,而无需额外的图像或标签。
translated by 谷歌翻译
近年来,深度学习模型已成为农业计算机愿景的标准。这样的模型通常使用最初适合更通用的非农业数据集的模型权重对农业任务进行微调。缺乏农业特定的微调可能会增加训练时间和资源的使用,并降低模型性能,从而导致数据效率的总体下降。为了克服这一限制,我们为三个不同的任务收集了广泛的现有公共数据集,标准化它们,并构建标准培训和评估管道,为我们提供了一组基准测试和预处理的模型。然后,我们使用在深度学习任务中常用的方法进行了许多实验,但在其特定领域的农业应用中未探索。我们的实验指导我们开发多种方法,以提高培训农业深度学习模型,而没有对现有管道进行大规模修改。我们的结果表明,即使是使用农业预审预告额的模型权重,或将特定的空间增强量用于数据处理管道,也可以显着提高模型性能并导致较短的收敛时间,从而节省训练资源。此外,我们发现,即使是在低质量注释中训练的模型也可以产生与高质量等效物的可比性水平,这表明注释差的数据集仍然可以用于培训,扩大当前可用数据集的池。我们的方法在整个农业深度学习中广泛适用,并具有重大数据效率提高的高潜力。
translated by 谷歌翻译
成对图像和文本的大型数据集越来越受到愿景和愿景和语言任务的通用表示。此类数据集已通过查询搜索引擎或收集HTML Alt-Text构建 - 由于Web数据是嘈杂的,因此它们需要复杂的过滤管道来维护质量。我们探索备用数据源以收集具有最小滤波的高质量数据。我们介绍Redcaps - 从Reddit收集的12M图像文本对的大规模数据集。来自Reddit的图像和标题描绘并描述了各种各样的物体和场景。我们从手动策划的FuSoddits集中收集数据,这为粗略图像标签提供给粗略图像标签,并允许我们转向数据集组合而不标记单个实例。我们展示Redcaps培训的标题模型产生了人类优选的丰富和各种标题,并学习转移到许多下游任务的视觉表现。
translated by 谷歌翻译
本文介绍了用于学习对象级别,语言感知和富含语义的视觉表示的接地语言图像预培训(GLIP)模型。 Glip统一对象检测和短语进行预培训。统一带来了两个好处:1)它允许GLIP从检测和接地数据中学习,以改善两个任务和引导良好的接地模型; 2)GLIP可以通过以自培训方式产生接地盒来利用大规模的图像文本对,使学习的表示是语义丰富的。在我们的实验中,我们在27M的接地数据上预先列车触胶,包括3M人的注释和24M Web爬网的图像文本对。学习的表示表明了强烈的零射击和对各种对象识别任务的可转换性。 1)直接在Coco和LVIS上评估(在训练期间没有在Coco中看到任何图像)时,Plip分别达到49.8 AP和26.9 AP,超过许多监督基线。 2)在COCO上微调后,GLIP在Val和61.5 AP上实现60.8 AP在测试开发上,超过先前的SOTA。 3)当转移到下游对象检测任务时,具有完全监控动态头的1次触发器竞争对手。代码将在https://github.com/microsoft/glip发布。
translated by 谷歌翻译
Massive data corpora like WebText, Wikipedia, Conceptual Captions, WebImageText, and LAION have propelled recent dramatic progress in AI. Large neural models trained on such datasets produce impressive results and top many of today's benchmarks. A notable omission within this family of large-scale datasets is 3D data. Despite considerable interest and potential applications in 3D vision, datasets of high-fidelity 3D models continue to be mid-sized with limited diversity of object categories. Addressing this gap, we present Objaverse 1.0, a large dataset of objects with 800K+ (and growing) 3D models with descriptive captions, tags, and animations. Objaverse improves upon present day 3D repositories in terms of scale, number of categories, and in the visual diversity of instances within a category. We demonstrate the large potential of Objaverse via four diverse applications: training generative 3D models, improving tail category segmentation on the LVIS benchmark, training open-vocabulary object-navigation models for Embodied AI, and creating a new benchmark for robustness analysis of vision models. Objaverse can open new directions for research and enable new applications across the field of AI.
translated by 谷歌翻译
长期以来,将物体检测推向开放量和几乎没有射击转移一直是计算机视觉研究的挑战。这项工作探讨了一种持续的学习方法,该方法使探测器能够通过多数据远见语言的预训练扩展其零/少量功能。我们使用自然语言作为知识表示,我们探讨了从不同培训数据集积累“视觉词汇”的方法,并将任务统一为语言条件的检测框架。具体而言,我们提出了一种新颖的语言感知探测器OMDET和一种新颖的培训机制。拟议的多模式检测网络可以解决多数据库联合培训中的技术挑战,并且可以推广到任意数量的培训数据集,而无需手动标签分类合并的要求。与单独训练相比,Coco,Pascal VOC和更宽的面部/行人的实验结果通过在关节训练中或更高的分数来证实了疗效。此外,我们对超过400万个独特的对象词汇进行了预先培训,并在ODINW的35个下游任务上评估了所得模型。结果表明,OMDET能够在ODINW上实现最新的微调性能。分析表明,通过扩展提出的预训练方法,OMDET继续改善其零/少量调整性能,这表明了进一步扩展的有希望的方法。
translated by 谷歌翻译
多年来,为各种对象检测任务开发了数据集。海事域中的对象检测对于船舶的安全和导航至关重要。但是,在海事域中,仍然缺乏公开可用的大规模数据集。为了克服这一挑战,我们提出了Kolomverse,这是一个开放的大型图像数据集,可在Kriso(韩国研究所和海洋工程研究所)的海事域中进行物体检测。我们收集了从韩国21个领土水域捕获的5,845小时的视频数据。通过精心设计的数据质量评估过程,我们从视频数据中收集了大约2,151,470 4K分辨率的图像。该数据集考虑了各种环境:天气,时间,照明,遮挡,观点,背景,风速和可见性。 Kolomverse由五个类(船,浮标,渔网浮标,灯塔和风电场)组成,用于海上对象检测。该数据集的图像为3840美元$ \ times $ 2160像素,据我们所知,它是迄今为止最大的公开数据集,用于海上域中的对象检测。我们进行了对象检测实验,并在几个预训练的最先进的架构上评估了我们的数据集,以显示我们数据集的有效性和实用性。该数据集可在:\ url {https://github.com/maritimedataset/kolomverse}中获得。
translated by 谷歌翻译
大规模数据集在计算机视觉中起着至关重要的作用。但是当前的数据集盲目注释而没有与样品区分的区分,从而使数据收集效率低下且不计。开放的问题是如何积极地构建大型数据集。尽管先进的主动学习算法可能是答案,但我们在实验上发现它们在分发数据广泛的现实注释方案中是la脚的。因此,这项工作为现实的数据集注释提供了一个新颖的主动学习框架。配备了此框架,我们构建了一个高质量的视觉数据集 - 竹子,由69m的图像分类注释,带有119K类别,带有809个类别的28m对象边界框注释。我们通过从几个知识库中整合的层次分类法来组织这些类别。分类注释比Imagenet22K大四倍,检测的注释比Object365大三倍。与ImagEnet22K和Objects365相比,预先训练的竹子在各种下游任务中实现了卓越的性能(分类的6.2%增长,检测到2.1%的增长)。我们认为,我们的积极学习框架和竹子对于将来的工作至关重要。
translated by 谷歌翻译
Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of wellannotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect 2806 aerial images from different sensors and platforms. Each image is of the size about 4000 × 4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using 15 common object categories. The fully annotated DOTA images contains 188, 282 instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral. To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.
translated by 谷歌翻译
这项工作的目的是使用零手动注释建立可扩展的管道,以将对象检测器扩展到新颖/看不见的类别。为此,我们做出以下四个贡献:(i)追求概括,我们提出了一个两阶段的开放式摄制对象检测器,其中类无形的对象建议与预先训练的视觉视觉训练的文本编码一起分类语言模型; (ii)要将视觉潜在空间(RPN框建议)与预训练的文本编码器配对,我们提出了区域提示的概念,以学习将文本嵌入空间与区域视觉对象特征相结合; (iii)为了扩展学习过程以检测更广泛的对象,我们通过新颖的自我训练框架利用可用的在线资源,该框架允许在嘈杂的未经图像的网络图像上训练所提出的检测器。最后,(iv)评估我们所提出的检测器,称为及时插图,我们对具有挑战性的LVI和MS-COCO数据集进行了广泛的实验。提示件表现出优于现有方法的卓越性能,而其他培训图像和零手动注释较少。带代码的项目页面:https://fcjian.github.io/promptdet。
translated by 谷歌翻译
In this paper, we introduce a new large-scale object detection dataset, Objects365, which has 365 object categories over 600K training images. More than 10 million, high-quality bounding boxes are manually labeled through a three-step, carefully designed annotation pipeline. It is the largest object detection dataset (with full annotation) so far and establishes a more challenging benchmark for the community. Objects365 can serve as a better feature learning dataset for localization-sensitive tasks like object detection and semantic segmentation. The Objects365 pre-trained models significantly outperform ImageNet pre-trained models with 5.6 points gain (42 vs 36.4) based on the standard setting of 90K iterations on COCO benchmark. Even compared with much long training time like 540K iterations, our Objects365 pretrained model with 90K iterations still have 2.7 points gain (42 vs 39.3). Meanwhile, the finetuning time can be greatly reduced (up to 10 times) when reaching the same accuracy. Better generalization ability of Object365 has also been verified on CityPersons, VOC segmentation, and ADE tasks. The dataset as well as the pretrainedmodels have been released at www.objects365.org. * indicates equal contribution.
translated by 谷歌翻译
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
translated by 谷歌翻译
Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in
translated by 谷歌翻译
从自然语言监督中学习视觉表示,最近在许多开创性的作品中表现出了巨大的希望。通常,这些具有语言的视觉模型表现出对各种数据集和任务的强大可传递性。但是,由于缺乏易于使用的评估工具包和公共基准,评估这些模型的可转让性仍然很具有挑战性。为了解决这个问题,我们构建了高级版(评估语言的视觉任务级传输),这是用于评估(预训练)语言增强视觉模型的第一个基准和工具包。升华由三个组成部分组成。 (i)数据集。作为下游评估套件,它由20个图像分类数据集和35个对象检测数据集组成,每个数据集都用外部知识来增强。 (ii)工具包。开发了自动高参数调谐工具包,以促进下游任务的模型评估。 (iii)指标。多种评估指标用于测量样品效率(零射击和少量)和参数效率(线性探测和完整模型微调)。我们在https://computer-vision-in-the-wild.github.io/elevater/上公开发布leverater
translated by 谷歌翻译
Semantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. Totally there are 25k images of the complex everyday scenes containing a variety of objects in their natural spatial context. On average there are 19.5 instances and 10.5 object classes per image. Based on ADE20K, we construct benchmarks for scene parsing and instance segmentation. We provide baseline performances on both of the benchmarks and re-implement the state-ofthe-art models for open source. We further evaluate the effect of synchronized batch normalization and find that a reasonably large batch size is crucial for the semantic segmentation performance. We show that the networks trained on ADE20K are able to segment a wide variety of scenes and objects 1 .
translated by 谷歌翻译