联合学习(FL)在分布式客户端上培训机器学习模型,而不会暴露单个数据。与通常基于仔细组织的数据的集中培训不同,FL处理通常不混阻和不平衡的设备数据。因此,处理所有数据的传统流行训练协议同样地导致浪费本地计算资源,并减慢全局学习过程。为此,我们提出了一个系统性的FLBalancer,它积极选择客户的培训样本。我们的示例选择策略在尊重客户端的隐私和计算能力的同时优先确定更多“信息性”数据。为了更好地利用样本选择来加速全球培训,我们进一步推出了一种自适应截止日期控制方案,该方案预测每个轮的最佳截止日期,具有不同的客户端列车数据。与具有截止日期配置方法的现有流算法相比,我们对三个不同域的五个数据集的评估表明,FedBalancer将时间至准确性的性能提高1.22〜4.62倍,同时提高模型精度1.0〜3.3%。我们还表明,通过展示在与三种不同的FL算法共同运行时,FedBalancer提高了收敛速度和准确性,可以随时适用于其他流动方法。
translated by 谷歌翻译
联合学习(FL)可以使用学习者使用本地数据进行分布式培训,从而增强隐私和减少沟通。但是,它呈现出与数据分布,设备功能和参与者可用性的异质性有关的众多挑战,作为部署量表,这可能会影响模型融合和偏置。现有的FL方案使用随机参与者选择来提高公平性;然而,这可能导致资源低效和更低的质量培训。在这项工作中,我们系统地解决了FL中的资源效率问题,展示了智能参与者选择的好处,并将更新从争吵的参与者纳入。我们展示了这些因素如何实现资源效率,同时还提高了训练有素的模型质量。
translated by 谷歌翻译
联合学习(FL)可以对机器学习模型进行分布式培训,同时将个人数据保存在用户设备上。尽管我们目睹了FL在移动传感领域的越来越多的应用,例如人类活动识别(HAR),但在多设备环境(MDE)的背景下,尚未对FL进行研究,其中每个用户都拥有多个数据生产设备。随着移动设备和可穿戴设备的扩散,MDE在Ubicomp设置中越来越受欢迎,因此需要对其中的FL进行研究。 MDE中的FL的特征是在客户和设备异质性的存在中并不复杂,并不是独立的,并且在客户端之间并非独立分布(非IID)。此外,确保在MDE中有效利用佛罗里达州客户的系统资源仍然是一个重要的挑战。在本文中,我们提出了以用户为中心的FL培训方法来应对MDE中的统计和系统异质性,并在设备之间引起推理性能的一致性。火焰功能(i)以用户为中心的FL培训,利用同一用户的设备之间的时间对齐; (ii)准确性和效率感知设备的选择; (iii)对设备的个性化模型。我们还提出了具有现实的能量流量和网络带宽配置文件的FL评估测试,以及一种基于类的新型数据分配方案,以将现有HAR数据集扩展到联合设置。我们在三个多设备HAR数据集上的实验结果表明,火焰的表现优于各种基准,F1得分高4.3-25.8%,能源效率提高1.02-2.86倍,并高达2.06倍的收敛速度,以通过FL的公平分布来获得目标准确性工作量。
translated by 谷歌翻译
可扩展性和隐私是交叉设备联合学习(FL)系统的两个关键问题。在这项工作中,我们确定了FL中的客户端更新的同步流动聚合不能高效地缩放到几百个并行培训之外。它导致ModelPerforce和训练速度的回报递减,Ampanysto大批量培训。另一方面,FL(即异步FL)中的客户端更新的异步聚合减轻了可扩展性问题。但是,聚合个性链子更新与安全聚合不兼容,这可能导致系统的不良隐私水平。为了解决这些问题,我们提出了一种新颖的缓冲异步聚合方法FedBuff,这是不可知的优化器的选择,并结合了同步和异步FL的最佳特性。我们经验证明FEDBuff比同步FL更有效,比异步FL效率更高3.3倍,同时兼容保留保护技术,如安全聚合和差异隐私。我们在平滑的非凸设置中提供理论融合保证。最后,我们显示在差异私有培训下,FedBuff可以在低隐私设置下占FEDAVGM并实现更高隐私设置的相同实用程序。
translated by 谷歌翻译
Federated Learning (FL) is a machine learning paradigm that enables the training of a shared global model across distributed clients while keeping the training data local. While most prior work on designing systems for FL has focused on using stateful always running components, recent work has shown that components in an FL system can greatly benefit from the usage of serverless computing and Function-as-a-Service technologies. To this end, distributed training of models with severless FL systems can be more resource-efficient and cheaper than conventional FL systems. However, serverless FL systems still suffer from the presence of stragglers, i.e., slow clients due to their resource and statistical heterogeneity. While several strategies have been proposed for mitigating stragglers in FL, most methodologies do not account for the particular characteristics of serverless environments, i.e., cold-starts, performance variations, and the ephemeral stateless nature of the function instances. Towards this, we propose FedLesScan, a novel clustering-based semi-asynchronous training strategy, specifically tailored for serverless FL. FedLesScan dynamically adapts to the behaviour of clients and minimizes the effect of stragglers on the overall system. We implement our strategy by extending an open-source serverless FL system called FedLess. Moreover, we comprehensively evaluate our strategy using the 2nd generation Google Cloud Functions with four datasets and varying percentages of stragglers. Results from our experiments show that compared to other approaches FedLesScan reduces training time and cost by an average of 8% and 20% respectively while utilizing clients better with an average increase in the effective update ratio of 17.75%.
translated by 谷歌翻译
跨不同边缘设备(客户)局部数据的分布不均匀,导致模型训练缓慢,并降低了联合学习的准确性。幼稚的联合学习(FL)策略和大多数替代解决方案试图通过加权跨客户的深度学习模型来实现更多公平。这项工作介绍了在现实世界数据集中遇到的一种新颖的非IID类型,即集群键,其中客户组具有具有相似分布的本地数据,从而导致全局模型收敛到过度拟合的解决方案。为了处理非IID数据,尤其是群集串数据的数据,我们提出了FedDrl,这是一种新型的FL模型,它采用了深厚的强化学习来适应每个客户的影响因素(将用作聚合过程中的权重)。在一组联合数据集上进行了广泛的实验证实,拟议的FEDDR可以根据CIFAR-100数据集的平均平均为FedAvg和FedProx方法提高了有利的改进,例如,高达4.05%和2.17%。
translated by 谷歌翻译
我们展示了FedScale,这是一种多样化的挑战和现实的基准数据集,以便于可扩展,全面,可重复的联邦学习(FL)研究。 FedScale数据集是大规模的,包括不同的重要性范围,例如图像分类,对象检测,字预测和语音识别。对于每个数据集,我们使用逼真的数据拆分和评估度量提供统一的评估协议。为了满足在规模中繁殖现实流体的压力需求,我们还建立了一个有效的评估平台,以简化和标准化流程实验设置和模型评估的过程。我们的评估平台提供灵活的API来实现新的FL算法,并包括具有最小开发人员的新执行后端。最后,我们在这些数据集上执行深入的基准实验。我们的实验表明,在现实流动特征下,在系统的异质性感知协同优化和统计效率下提供了富有成效的机遇。 FedScale是具有允许许可的开放源,积极维护,我们欢迎来自社区的反馈和贡献。
translated by 谷歌翻译
联合学习(FL)通常以同步平行方式进行,其中慢速客户的参与延迟了训练迭代。当前的FL系统采用参与者选择策略,在每次迭代中选择具有优质数据的快速客户。但是,这在实践中并不总是可以的,而且选择策略通常必须在客户的速度和数据质量之间进行不愉快的权衡。在本文中,我们提出了双鱼座,这是一种具有智能参与者选择和用于加速培训的模型聚合的异步FL系统。为了避免产生过多的资源成本和陈旧的培训计算,双鱼座使用新颖的评分机制来识别合适的客户参加培训迭代。它还可以调整模型聚合的步伐,以动态限制所选客户端和服务器之间的进度差距,并在平滑的非convex设置中具有可证明的融合保证。我们已经在一个名为Plato的开源FL平台中实现了双鱼座,并评估了其在流行视觉和语言模型的大规模实验中的性能。双鱼座的表现优于最先进的同步和异步方案,分别高达2.0倍和1.9倍的时间加速。
translated by 谷歌翻译
本文提出并表征了联合学习(OARF)的开放应用程序存储库,是联合机器学习系统的基准套件。以前可用的联合学习基准主要集中在合成数据集上,并使用有限数量的应用程序。 OARF模仿更现实的应用方案,具有公开的数据集,如图像,文本和结构数据中的不同数据孤岛。我们的表征表明,基准套件在数据大小,分布,特征分布和学习任务复杂性中多样化。与参考实施的广泛评估显示了联合学习系统的重要方面的未来研究机会。我们开发了参考实现,并评估了联合学习的重要方面,包括模型准确性,通信成本,吞吐量和收敛时间。通过这些评估,我们发现了一些有趣的发现,例如联合学习可以有效地提高端到端吞吐量。
translated by 谷歌翻译
机器学习模型已在移动网络中部署,以处理来自不同层的数据,以实现自动化网络管理和设备的智能。为了克服集中式机器学习的高度沟通成本和严重的隐私问题,已提出联合学习(FL)来实现网络设备之间的分布式机器学习。虽然在FL中广泛研究了计算和通信限制,但仍未探索设备存储对FL性能的影响。如果没有有效有效的数据选择政策来过滤设备上的大量流媒体数据,经典FL可能会遭受更长的模型训练时间(超过$ 4 \ times $)和显着的推理准确性(超过$ 7 \%\%$),则遭受了损失,观察到了。在我们的实验中。在这项工作中,我们迈出了第一步,考虑使用有限的在设备存储的FL的在线数据选择。我们首先定义了一个新的数据评估度量,以在FL中进行数据选择:在设备数据样本上,局部梯度在所有设备的数据上投影到全球梯度上。我们进一步设计\ textbf {ode},一个\ textbf {o} nline \ textbf {d} ata s \ textbf {e textbf {e} fl for f for fl f textbf {o}的框架,用于协作网络设备,以协作存储有价值的数据示例,并保证用于快速的理论保证同时提高模型收敛并增强最终模型精度。一项工业任务(移动网络流量分类)和三个公共任务(综合任务,图像分类,人类活动识别)的实验结果显示了ODE的显着优势,而不是最先进的方法。特别是,在工业数据集上,ODE的成就高达$ 2.5 \ times $ $加速的培训时间和6美元的最终推理准确性增加,并且在实践环境中对各种因素都有强大的态度。
translated by 谷歌翻译
联合学习(FL)作为边缘设备的有希望的技术,以协作学习共享预测模型,同时保持其训练数据,从而解耦了从需要存储云中的数据的机器学习的能力。然而,在规模和系统异质性方面,FL难以现实地实现。虽然有许多用于模拟FL算法的研究框架,但它们不支持在异构边缘设备上进行可扩展的流程。在本文中,我们呈现花 - 一种全面的FL框架,通过提供新的设施来执行大规模的FL实验并考虑丰富的异构流程来区分现有平台。我们的实验表明花卉可以仅使用一对高端GPU在客户尺寸下进行FL实验。然后,研究人员可以将实验无缝地迁移到真实设备中以检查设计空间的其他部分。我们认为花卉为社区提供了一个批判性的新工具,用于研究和发展。
translated by 谷歌翻译
Federated learning (FL) has been proposed as a privacy-preserving approach in distributed machine learning. A federated learning architecture consists of a central server and a number of clients that have access to private, potentially sensitive data. Clients are able to keep their data in their local machines and only share their locally trained model's parameters with a central server that manages the collaborative learning process. FL has delivered promising results in real-life scenarios, such as healthcare, energy, and finance. However, when the number of participating clients is large, the overhead of managing the clients slows down the learning. Thus, client selection has been introduced as a strategy to limit the number of communicating parties at every step of the process. Since the early na\"{i}ve random selection of clients, several client selection methods have been proposed in the literature. Unfortunately, given that this is an emergent field, there is a lack of a taxonomy of client selection methods, making it hard to compare approaches. In this paper, we propose a taxonomy of client selection in Federated Learning that enables us to shed light on current progress in the field and identify potential areas of future research in this promising area of machine learning.
translated by 谷歌翻译
Federated learning (FL) allows multiple clients cooperatively train models without disclosing local data. However, the existing works fail to address all these practical concerns in FL: limited communication resources, dynamic network conditions and heterogeneous client properties, which slow down the convergence of FL. To tackle the above challenges, we propose a heterogeneity-aware FL framework, called FedCG, with adaptive client selection and gradient compression. Specifically, the parameter server (PS) selects a representative client subset considering statistical heterogeneity and sends the global model to them. After local training, these selected clients upload compressed model updates matching their capabilities to the PS for aggregation, which significantly alleviates the communication load and mitigates the straggler effect. We theoretically analyze the impact of both client selection and gradient compression on convergence performance. Guided by the derived convergence rate, we develop an iteration-based algorithm to jointly optimize client selection and compression ratio decision using submodular maximization and linear programming. Extensive experiments on both real-world prototypes and simulations show that FedCG can provide up to 5.3$\times$ speedup compared to other methods.
translated by 谷歌翻译
Federated Learning (FL) has been widely accepted as the solution for privacy-preserving machine learning without collecting raw data. While new technologies proposed in the past few years do evolve the FL area, unfortunately, the evaluation results presented in these works fall short in integrity and are hardly comparable because of the inconsistent evaluation metrics and experimental settings. In this paper, we propose a holistic evaluation framework for FL called FedEval, and present a benchmarking study on seven state-of-the-art FL algorithms. Specifically, we first introduce the core evaluation taxonomy model, called FedEval-Core, which covers four essential evaluation aspects for FL: Privacy, Robustness, Effectiveness, and Efficiency, with various well-defined metrics and experimental settings. Based on the FedEval-Core, we further develop an FL evaluation platform with standardized evaluation settings and easy-to-use interfaces. We then provide an in-depth benchmarking study between the seven well-known FL algorithms, including FedSGD, FedAvg, FedProx, FedOpt, FedSTC, SecAgg, and HEAgg. We comprehensively analyze the advantages and disadvantages of these algorithms and further identify the suitable practical scenarios for different algorithms, which is rarely done by prior work. Lastly, we excavate a set of take-away insights and future research directions, which are very helpful for researchers in the FL area.
translated by 谷歌翻译
联合学习(FL)是一种有效的分布式机器学习范式,以隐私的方式采用私人数据集。 FL的主要挑战是,END设备通常具有各种计算和通信功能,其培训数据并非独立且分布相同(非IID)。由于在移动网络中此类设备的通信带宽和不稳定的可用性,因此只能在每个回合中选择最终设备(也称为参与者或客户端的参与者或客户端)。因此,使用有效的参与者选择方案来最大程度地提高FL的性能,包括最终模型的准确性和训练时间,这一点至关重要。在本文中,我们对FL的参与者选择技术进行了评论。首先,我们介绍FL并突出参与者选择期间的主要挑战。然后,我们根据其解决方案来审查现有研究并将其分类。最后,根据我们对该主题领域最新的分析的分析,我们为FL的参与者选择提供了一些未来的指示。
translated by 谷歌翻译
Federated learning (FL) is an effective technique to directly involve edge devices in machine learning training while preserving client privacy. However, the substantial communication overhead of FL makes training challenging when edge devices have limited network bandwidth. Existing work to optimize FL bandwidth overlooks downstream transmission and does not account for FL client sampling. In this paper we propose GlueFL, a framework that incorporates new client sampling and model compression algorithms to mitigate low download bandwidths of FL clients. GlueFL prioritizes recently used clients and bounds the number of changed positions in compression masks in each round. Across three popular FL datasets and three state-of-the-art strategies, GlueFL reduces downstream client bandwidth by 27% on average and reduces training time by 29% on average.
translated by 谷歌翻译
联邦学习(FL)的最新进展为大规模的分布式客户带来了大规模的机器学习机会,具有绩效和数据隐私保障。然而,大多数当前的工作只关注FL中央控制器的兴趣,忽略了客户的利益。这可能导致不公平,阻碍客户积极参与学习过程并损害整个流动系统的可持续性。因此,在佛罗里达州确保公平的主题吸引了大量的研究兴趣。近年来,已经提出了各种公平知识的FL(FAFL)方法,以努力实现不同观点的流体公平。但是,没有全面的调查,帮助读者能够深入了解这种跨学科领域。本文旨在提供这样的调查。通过审查本领域现有文献所采用的基本和简化的假设,提出了涵盖FL的主要步骤的FAFL方法的分类,包括客户选择,优化,贡献评估和激励分配。此外,我们讨论了实验评估FAFL方法表现的主要指标,并建议了一些未来的未来研究方向。
translated by 谷歌翻译
作为一种有希望的隐私机器学习方法,联合学习(FL)可以使客户跨客户培训,而不会损害其机密的本地数据。但是,现有的FL方法遇到了不均分布数据的推理性能低的问题,因为它们中的大多数依赖于联合平均(FIDAVG)基于联合的聚合。通过以粗略的方式平均模型参数,FedAvg将局部模型的个体特征黯然失色,这极大地限制了FL的推理能力。更糟糕的是,在每一轮FL培训中,FedAvg向客户端向客户派遣了相同的初始本地模型,这很容易导致对最佳全局模型的局限性搜索。为了解决上述问题,本文提出了一种新颖有效的FL范式,名为FEDMR(联合模型重组)。与传统的基于FedAvg的方法不同,FEDMR的云服务器将收集到的本地型号的每一层层混合,并重组它们以实现新的模型,以供客户端培训。由于在每场FL比赛中进行了细粒度的模型重组和本地培训,FEDMR可以迅速为所有客户找出一个全球最佳模型。全面的实验结果表明,与最先进的FL方法相比,FEDMR可以显着提高推理准确性而不会引起额外的通信开销。
translated by 谷歌翻译
联合学习是一种在不违反隐私限制的情况下对分布式数据集进行统计模型培训统计模型的最新方法。通过共享模型而不是客户和服务器之间的数据来保留数据位置原则。这带来了许多优势,但也带来了新的挑战。在本报告中,我们探讨了这个新的研究领域,并执行了几项实验,以加深我们对这些挑战的理解以及不同的问题设置如何影响最终模型的性能。最后,我们为这些挑战之一提供了一种新颖的方法,并将其与文献中的其他方法进行了比较。
translated by 谷歌翻译
个性化联合学习(FL)促进了多个客户之间的合作,以学习个性化模型而无需共享私人数据。该机制减轻了系统中通常遇到的统计异质性,即不同客户端的非IID数据。现有的个性化算法通常假设所有客户自愿进行个性化。但是,潜在的参与者可能仍然不愿个性化模型,因为他们可能无法正常工作。在这种情况下,客户选择使用全局模型。为了避免做出不切实际的假设,我们介绍了个性化率,该率是愿意培训个性化模型,将其介绍给联合设置并提出DYPFL的客户的比例。这种动态个性化的FL技术激励客户参与个性化本地模型,同时允许在整体模型表现更好时采用全球模型。我们表明,DYPFL中的算法管道可以保证良好的收敛性能,从而使其在广泛的条件下优于替代性个性化方法,包括异质性,客户端数量,本地时期和批量尺寸的变化。
translated by 谷歌翻译