本文提出了在不同运动条件下不同帧中的惯性测量单元(IMU)预融合的统一数学框架。导航状态精确地离散化为三部分:本地增量,全局状态和全局增量。全局增量可以在不同的帧中计算,例如局部大地测量导航帧和地球中心固定帧。称为IMU预融合的本地增量可以根据代理的运动和IMU的等级的不同假设计算。因此,在不同环境下的惯性集成导航系统的在线状态估计更准确和更方便。
translated by 谷歌翻译
目前,国家估计对于机器人技术非常重要,基于不确定性表示的谎言组对于国家估计问题很自然。有必要充分利用基质谎言组的几何形状和运动学。因此,该注释首次对最近提出的矩阵lie组$ se_k(3)$提供了详细的推导,我们的结果扩展了Barfoot \ cite {Barfoot2017State}的结果。然后,我们描述了该组适合状态表示的情况。我们还基于MATLAB框架开发了代码,以快速实施和测试。
translated by 谷歌翻译
通过将导航参数组装成矩阵lie组状态,相应的惯性导航系统(INS)运动模型具有群体属性属性。导航状态估计误差的谎言对数满足对数线性自主微分方程的满足。这些对数线性模型仍然适用,即使有任意的初始错误,这对于INS初始对齐非常有吸引力。但是,在现有的作品中,对数线性模型均基于一阶线性化近似来得出,这似乎与他们在INS初始对齐中的成功应用与较大的未对准相反。在这项工作中,可以证明也可以在没有任何近似值的情况下得出对数线性模型,首次在矩阵lie组SE_2(3)中给出了连续时间的左右不变误差的误差动力学。这项工作为在任意初始错误的情况下为对数线性模型的有效性提供了另一个证据。
translated by 谷歌翻译
姿势估计对于机器人感知,路径计划等很重要。机器人姿势可以在基质谎言组上建模,并且通常通过基于滤波器的方法进行估算。在本文中,我们在存在随机噪声的情况下建立了不变扩展Kalman滤波器(IEKF)的误差公式,并将其应用于视觉辅助惯性导航。我们通过OpenVINS平台上的数值模拟和实验评估我们的算法。在Euroc公共MAV数据集上执行的仿真和实验都表明,我们的算法优于某些基于最先进的滤波器方法,例如基于Quaternion的EKF,首先估计Jacobian EKF等。
translated by 谷歌翻译
虽然已经提出了用于国家估计的利用现有LIE组结构的许多作品,但特别是不变的扩展卡尔曼滤波器(IEKF),少数论文解决了允许给定系统进入IEKF框架的组结构的构造,即制造动态群体染色和观察不变。在本文中,我们介绍了大量系统,包括涉及在实践中遇到的导航车辆的大多数问题。对于那些系统,我们介绍一种新的方法,系统地为状态空间提供组结构,包括诸如偏差的车身框架的载体。我们使用它来派生与线性观察者或过滤器那些类似的观察者。建议的统一和多功能框架包括IHKF已经成功的所有系统,改善了用于传感器偏差的惯性导航的最新的“不完美”IEKF,并且允许寻址新颖的示例,如GNSS天线杆臂估计。
translated by 谷歌翻译
用于在线状态估计的随机过滤器是自治系统的核心技术。此类过滤器的性能是系统能力的关键限制因素之一。此类过滤器的渐近行为(例如,用于常规操作)和瞬态响应(例如,对于快速初始化和重置)对于保证自主系统的稳健操作至关重要。本文使用n个方向测量值(包括车身框架和参考框架方向类型测量值)引入了陀螺仪辅助姿态估计器的新通用公式。该方法基于一种集成状态公式,该公式结合了导航,所有方向传感器的外部校准以及在单个模棱两可的几何结构中的陀螺式偏置状态。这种新提出的对称性允许模块化的不同方向测量及其外部校准,同时保持在同一对称性中包括偏置态的能力。随后使用此对称性的基于滤波器的估计量明显改善了瞬态响应,与最新方法相比,渐近偏置和外部校准估计。估计器在统计代表性的模拟中得到了验证,并在现实世界实验中进行了测试。
translated by 谷歌翻译
本文为自动驾驶车辆提供了基于激光雷达的同时定位和映射(SLAM)。研究了来自地标传感器的数据和自适应卡尔曼滤波器(KF)中的带状惯性测量单元(IMU)加上系统的可观察性。除了车辆的状态和具有里程碑意义的位置外,自我调整过滤器还估计IMU校准参数以及测量噪声的协方差。流程噪声,状态过渡矩阵和观察灵敏度矩阵的离散时间协方差矩阵以封闭形式得出,使其适合实时实现。检查3D SLAM系统的可观察性得出的结论是,该系统在地标对准的几何条件下仍然可以观察到。
translated by 谷歌翻译
The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.
translated by 谷歌翻译
一个谎言小组是一个旧的数学抽象对象,追溯到xix世纪,当数学家大道谎言奠定了连续转型组理论的基础。正如经常发生的那样,许多年后,它的使用已经遍布各种科学和技术领域。在机器人学中,我们最近在估计领域中经历了一种重要的趋势,特别是在导航的运动估计中。然而,对于绝大多数机器人来说,谎言群体是高度抽象的结构,因此难以理解和使用。这可能是由于谎言理论上的大多数文献是由数学家和物理学家编写的,这些主义者可能比我们更多地用于这种理论涉及的深层抽象。在机器人学的估计中,通常没有必要利用理论的全部能力,因此需要选择材料的努力。在这篇论文中,我们将通过最基本的谎言理论原则,目的是传达明确和有用的想法,并留下了谎言理论的重要语料库。即使是这种肢解,这里所包含的材料也已被证明在机器人的现代估计算法中非常有用,特别是在SLAM,视觉内径等领域。除了这种微谎言之外,我们提供了一些应用示例的一章,以及机器人中使用的主要谎言团体的广泛公式参考,包括大多数雅各比矩阵以及轻松操纵它们的方式。我们还提供了一个新的C ++模板库,实现此处描述的所有功能。
translated by 谷歌翻译
A reliable self-contained navigation system is essential for autonomous vehicles. Based on our previous study on Wheel-INS \cite{niu2019}, a wheel-mounted inertial measurement unit (Wheel-IMU)-based dead reckoning (DR) system, in this paper, we propose a multiple IMUs-based DR solution for the wheeled robots. The IMUs are mounted at different places of the wheeled vehicles to acquire various dynamic information. In particular, at least one IMU has to be mounted at the wheel to measure the wheel velocity and take advantages of the rotation modulation. The system is implemented through a distributed extended Kalman filter structure where each subsystem (corresponding to each IMU) retains and updates its own states separately. The relative position constraints between the multiple IMUs are exploited to further limit the error drift and improve the system robustness. Particularly, we present the DR systems using dual Wheel-IMUs, one Wheel-IMU plus one vehicle body-mounted IMU (Body-IMU), and dual Wheel-IMUs plus one Body-IMU as examples for analysis and comparison. Field tests illustrate that the proposed multi-IMU DR system outperforms the single Wheel-INS in terms of both positioning and heading accuracy. By comparing with the centralized filter, the proposed distributed filter shows unimportant accuracy degradation while holds significant computation efficiency. Moreover, among the three multi-IMU configurations, the one Body-IMU plus one Wheel-IMU design obtains the minimum drift rate. The position drift rates of the three configurations are 0.82\% (dual Wheel-IMUs), 0.69\% (one Body-IMU plus one Wheel-IMU), and 0.73\% (dual Wheel-IMUs plus one Body-IMU), respectively.
translated by 谷歌翻译
We propose AstroSLAM, a standalone vision-based solution for autonomous online navigation around an unknown target small celestial body. AstroSLAM is predicated on the formulation of the SLAM problem as an incrementally growing factor graph, facilitated by the use of the GTSAM library and the iSAM2 engine. By combining sensor fusion with orbital motion priors, we achieve improved performance over a baseline SLAM solution. We incorporate orbital motion constraints into the factor graph by devising a novel relative dynamics factor, which links the relative pose of the spacecraft to the problem of predicting trajectories stemming from the motion of the spacecraft in the vicinity of the small body. We demonstrate the excellent performance of AstroSLAM using both real legacy mission imagery and trajectory data courtesy of NASA's Planetary Data System, as well as real in-lab imagery data generated on a 3 degree-of-freedom spacecraft simulator test-bed.
translated by 谷歌翻译
Estimation algorithms, such as the sliding window filter, produce an estimate and uncertainty of desired states. This task becomes challenging when the problem involves unobservable states. In these situations, it is critical for the algorithm to ``know what it doesn't know'', meaning that it must maintain the unobservable states as unobservable during algorithm deployment. This letter presents general requirements for maintaining consistency in sliding window filters involving unobservable states. The value of these requirements when designing a navigation solution is experimentally shown within the context of visual-inertial SLAM making use of IMU preintegration.
translated by 谷歌翻译
自主飞机的导航系统依赖于由套件的读数提供的读数来估计飞机状态。在固定翼车的情况下,传感器套件由三联脉的加速度计,陀螺仪和磁力计,全球导航卫星系统(GNSS)接收器和空中数据系统(皮托管,空气叶片,温度计和晴雨表)组成,并且通常由一个或多个数码相机补充。准确表示每个传感器的行为和错误源,以及摄像机生成的图像,在飞行模拟中是必不可少的,以及对新型惯性或视觉导航算法的评估,以及在低交换的情况下大小,重量和电源)飞机,其中传感器的质量和价格有限。本文为每个传感器提供了现实和可定制的模型,该传感器已被实现为开源C ++模拟。随着时间的推移提供了飞机状态的真正变化,模拟提供了所有传感器产生的误差的时间戳系列,以及地球表面的现实图像,类似于沿着指示的状态位置飞行的真正摄像机飞行的地面表面和态度。
translated by 谷歌翻译
Visual Inertial Odometry (VIO) is the problem of estimating a robot's trajectory by combining information from an inertial measurement unit (IMU) and a camera, and is of great interest to the robotics community. This paper develops a novel Lie group symmetry for the VIO problem and applies the recently proposed equivariant filter. The symmetry is shown to be compatible with the invariance of the VIO reference frame, lead to exact linearisation of bias-free IMU dynamics, and provide equivariance of the visual measurement function. As a result, the equivariant filter (EqF) based on this Lie group is a consistent estimator for VIO with lower linearisation error in the propagation of state dynamics and a higher order equivariant output approximation than standard formulations. Experimental results on the popular EuRoC and UZH FPV datasets demonstrate that the proposed system outperforms other state-of-the-art VIO algorithms in terms of both speed and accuracy.
translated by 谷歌翻译
This is a follow-up tutorial article of our previous article entitled "Robot Basics: Representation, Rotation and Velocity". For better understanding of the topics covered in this articles, we recommend the readers to first read our previous tutorial article on robot basics. Specifically, in this article, we will cover some more advanced topics on robot kinematics, including robot motion, forward kinematics, inverse kinematics, and robot dynamics. For the topics, terminologies and notations introduced in the previous article, we will use them directly without re-introducing them again in this article. Also similar to the previous article, math and formulas will also be heavily used in this article as well (hope the readers are well prepared for the upcoming math bomb). After reading this article, readers should be able to have a deeper understanding about how robot motion, kinematics and dynamics. As to some more advanced topics about robot control, we will introduce them in the following tutorial articles for readers instead.
translated by 谷歌翻译
惯性导航系统与全球导航卫星系统之间的融合经常用于许多平台,例如无人机,陆地车辆和船舶船只。融合通常是在基于模型的扩展卡尔曼过滤框架中进行的。过滤器的关键参数之一是过程噪声协方差。它负责实时解决方案的准确性,因为它考虑了车辆动力学不确定性和惯性传感器质量。在大多数情况下,过程噪声被认为是恒定的。然而,由于整个轨迹的车辆动力学和传感器测量变化,过程噪声协方差可能会发生变化。为了应对这种情况,文献中建议了几种基于自适应的Kalman过滤器。在本文中,我们提出了一个混合模型和基于学习的自适应导航过滤器。我们依靠基于模型的Kalman滤波器和设计深神网络模型来调整瞬时系统噪声协方差矩阵,仅基于惯性传感器读数。一旦学习了过程噪声协方差,就可以将其插入建立的基于模型的Kalman滤波器中。在推导了提出的混合框架后,提出了使用四极管的现场实验结果,并给出了与基于模型的自适应方法进行比较。我们表明,所提出的方法在位置误差中获得了25%的改善。此外,提出的混合学习方法可以在任何导航过滤器以及任何相关估计问题中使用。
translated by 谷歌翻译
自动水下车辆(AUV)通常在许多水下应用中使用。最近,在文献中,多旋翼无人自动驾驶汽车(UAV)的使用引起了更多关注。通常,两个平台都采用惯性导航系统(INS)和协助传感器进行准确的导航解决方案。在AUV导航中,多普勒速度日志(DVL)主要用于帮助INS,而对于无人机,通常使用全球导航卫星系统(GNSS)接收器。辅助传感器和INS之间的融合需要在估计过程中定义步长参数。它负责解决方案频率更新,并最终导致其准确性。步长的选择在计算负载和导航性能之间构成了权衡。通常,与INS操作频率(数百个HERTZ)相比,帮助传感器更新频率要慢得多。对于大多数平台来说,这种高率是不必要的,特别是对于低动力学AUV。在这项工作中,提出了基于监督机器学习的自适应调整方案,以选择适当的INS步骤尺寸。为此,定义了一个速度误差,允许INS/DVL或INS/GNSS在亚最佳工作条件下起作用,并最大程度地减少计算负载。模拟和现场实验的结果显示了使用建议的方法的好处。此外,建议的框架可以应用于任何类型的传感器或平台之间的任何其他融合场景。
translated by 谷歌翻译
自由飞行机器人的应用范围从娱乐目的到航空航天应用。用于这种系统的控制算法需要基于传感器反馈准确地估计它们的状态。本文的目的是设计和验证一个轻型状态估计算法,用于自由飞行开放运动链,估计其质量中心及其姿势的状态。该研究而不是利用非线性动力学模型,提出了两个卡尔曼滤波器(KF)的级联结构,其依赖于自由落体多体系的弹道运动以及来自惯性测量单元(IMU)和编码器的反馈。在模拟中验证了多种算法,以模拟使用Simulink模拟实际情况。改变了几个不确定的物理参数,结果表明,所提出的估计器在跟踪性能和计算时间方面优于EKF和UKF。
translated by 谷歌翻译
理想情况下,机器人应该以最大化关于其内部系统和外部操作环境的状态所获得的知识的方式移动。轨迹设计是一个具有挑战性的问题,从各种角度来看,从信息理论分析到基于倾斜的方法。最近,已经提出了基于可观察性的指标来找到能够快速准确的状态和参数估计的轨迹。这些方法的活力和功效尚未在文献中众所周知。在本文中,我们比较了两个最先进的方法,以便可观察性感知轨迹优化,并寻求增加重要的理论澄清和对其整体效力的宝贵讨论。为了评估,我们使用逼真的物理模拟器检查传感器到传感器外部自校准的代表性任务。我们还研究了这些算法的灵敏度,以改变易欣欣传感器测量的信息内容。
translated by 谷歌翻译
本文介绍了$ SE(3)$上的雷达射测方法,该方法利用了恒定的加速运动。运动先验被整合到滑动窗口优化方案中。我们使用Magnus扩展来准确整合运动,同时保持实时性能。此外,我们采用极地测量模型来更好地表示雷达检测不确定性。使用原型高分辨率雷达传感器的大型现实世界数据集评估我们的估计器。新的运动先验和测量模型明显地改善了相对于先前工作的恒定速度运动和笛卡尔测量模型,尤其是在滚动,音高和高度上。
translated by 谷歌翻译